Extensions 1→N→G→Q→1 with N=Q8 and Q=M4(2)

Direct product G=N×Q with N=Q8 and Q=M4(2)

Semidirect products G=N:Q with N=Q8 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
Q81M4(2) = C815SD16φ: M4(2)/C8C2 ⊆ Out Q864Q8:1M4(2)128,315
Q82M4(2) = Q82M4(2)φ: M4(2)/C8C2 ⊆ Out Q864Q8:2M4(2)128,320
Q83M4(2) = Q8⋊M4(2)φ: M4(2)/C2×C4C2 ⊆ Out Q864Q8:3M4(2)128,219
Q84M4(2) = D44M4(2)φ: M4(2)/C2×C4C2 ⊆ Out Q864Q8:4M4(2)128,221
Q85M4(2) = Q85M4(2)φ: M4(2)/C2×C4C2 ⊆ Out Q864Q8:5M4(2)128,223
Q86M4(2) = Q86M4(2)φ: trivial image64Q8:6M4(2)128,1703
Q87M4(2) = Q87M4(2)φ: trivial image64Q8:7M4(2)128,1723

Non-split extensions G=N.Q with N=Q8 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
Q8.1M4(2) = C89Q16φ: M4(2)/C8C2 ⊆ Out Q8128Q8.1M4(2)128,316
Q8.2M4(2) = Q8.M4(2)φ: M4(2)/C8C2 ⊆ Out Q8128Q8.2M4(2)128,319
Q8.3M4(2) = C42.374D4φ: M4(2)/C2×C4C2 ⊆ Out Q864Q8.3M4(2)128,220
Q8.4M4(2) = Q8.4M4(2)φ: trivial image64Q8.4M4(2)128,1716