Copied to
clipboard

G = D44M4(2)  order 128 = 27

2nd semidirect product of D4 and M4(2) acting via M4(2)/C2×C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D44M4(2), Q84M4(2), C42.402D4, C42.610C23, C4.33C4≀C2, D4⋊C828C2, Q8⋊C832C2, (C4×D4).17C4, (C4×Q8).17C4, C42.63(C2×C4), C4⋊C8.195C22, (C4×M4(2))⋊14C2, (C4×C8).312C22, (C22×C4).205D4, C4.21(C2×M4(2)), C4.133(C8⋊C22), C4⋊M4(2)⋊16C2, C42⋊C2.18C4, (C4×D4).266C22, (C4×Q8).253C22, C4.127(C8.C22), C23.47(C22⋊C4), (C2×C42).166C22, C2.15(C24.4C4), C2.6(C23.36D4), C2.9(C2×C4≀C2), (C4×C4○D4).4C2, C4⋊C4.182(C2×C4), (C2×C4○D4).16C4, (C2×D4).194(C2×C4), (C2×C4).1138(C2×D4), (C2×Q8).177(C2×C4), (C22×C4).188(C2×C4), (C2×C4).315(C22×C4), (C2×C4).316(C22⋊C4), C22.165(C2×C22⋊C4), SmallGroup(128,221)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — D44M4(2)
C1C2C22C2×C4C42C2×C42C4×C4○D4 — D44M4(2)
C1C2C2×C4 — D44M4(2)
C1C2×C4C2×C42 — D44M4(2)
C1C22C22C42 — D44M4(2)

Generators and relations for D44M4(2)
 G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=cac-1=a-1, ad=da, cbc-1=ab, dbd=a2b, dcd=c5 >

Subgroups: 244 in 133 conjugacy classes, 52 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C8⋊C4, C4⋊C8, C4⋊C8, C2×C42, C2×C42, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C2×M4(2), C2×C4○D4, D4⋊C8, Q8⋊C8, C4×M4(2), C4⋊M4(2), C4×C4○D4, D44M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, M4(2), C22×C4, C2×D4, C4≀C2, C2×C22⋊C4, C2×M4(2), C8⋊C22, C8.C22, C24.4C4, C23.36D4, C2×C4≀C2, D44M4(2)

Smallest permutation representation of D44M4(2)
On 64 points
Generators in S64
(1 52 59 24)(2 17 60 53)(3 54 61 18)(4 19 62 55)(5 56 63 20)(6 21 64 49)(7 50 57 22)(8 23 58 51)(9 45 30 39)(10 40 31 46)(11 47 32 33)(12 34 25 48)(13 41 26 35)(14 36 27 42)(15 43 28 37)(16 38 29 44)
(1 37 59 43)(2 29 60 16)(3 39 61 45)(4 31 62 10)(5 33 63 47)(6 25 64 12)(7 35 57 41)(8 27 58 14)(9 54 30 18)(11 56 32 20)(13 50 26 22)(15 52 28 24)(17 38 53 44)(19 40 55 46)(21 34 49 48)(23 36 51 42)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 37)(2 34)(3 39)(4 36)(5 33)(6 38)(7 35)(8 40)(9 54)(10 51)(11 56)(12 53)(13 50)(14 55)(15 52)(16 49)(17 25)(18 30)(19 27)(20 32)(21 29)(22 26)(23 31)(24 28)(41 57)(42 62)(43 59)(44 64)(45 61)(46 58)(47 63)(48 60)

G:=sub<Sym(64)| (1,52,59,24)(2,17,60,53)(3,54,61,18)(4,19,62,55)(5,56,63,20)(6,21,64,49)(7,50,57,22)(8,23,58,51)(9,45,30,39)(10,40,31,46)(11,47,32,33)(12,34,25,48)(13,41,26,35)(14,36,27,42)(15,43,28,37)(16,38,29,44), (1,37,59,43)(2,29,60,16)(3,39,61,45)(4,31,62,10)(5,33,63,47)(6,25,64,12)(7,35,57,41)(8,27,58,14)(9,54,30,18)(11,56,32,20)(13,50,26,22)(15,52,28,24)(17,38,53,44)(19,40,55,46)(21,34,49,48)(23,36,51,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,37)(2,34)(3,39)(4,36)(5,33)(6,38)(7,35)(8,40)(9,54)(10,51)(11,56)(12,53)(13,50)(14,55)(15,52)(16,49)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28)(41,57)(42,62)(43,59)(44,64)(45,61)(46,58)(47,63)(48,60)>;

G:=Group( (1,52,59,24)(2,17,60,53)(3,54,61,18)(4,19,62,55)(5,56,63,20)(6,21,64,49)(7,50,57,22)(8,23,58,51)(9,45,30,39)(10,40,31,46)(11,47,32,33)(12,34,25,48)(13,41,26,35)(14,36,27,42)(15,43,28,37)(16,38,29,44), (1,37,59,43)(2,29,60,16)(3,39,61,45)(4,31,62,10)(5,33,63,47)(6,25,64,12)(7,35,57,41)(8,27,58,14)(9,54,30,18)(11,56,32,20)(13,50,26,22)(15,52,28,24)(17,38,53,44)(19,40,55,46)(21,34,49,48)(23,36,51,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,37)(2,34)(3,39)(4,36)(5,33)(6,38)(7,35)(8,40)(9,54)(10,51)(11,56)(12,53)(13,50)(14,55)(15,52)(16,49)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28)(41,57)(42,62)(43,59)(44,64)(45,61)(46,58)(47,63)(48,60) );

G=PermutationGroup([[(1,52,59,24),(2,17,60,53),(3,54,61,18),(4,19,62,55),(5,56,63,20),(6,21,64,49),(7,50,57,22),(8,23,58,51),(9,45,30,39),(10,40,31,46),(11,47,32,33),(12,34,25,48),(13,41,26,35),(14,36,27,42),(15,43,28,37),(16,38,29,44)], [(1,37,59,43),(2,29,60,16),(3,39,61,45),(4,31,62,10),(5,33,63,47),(6,25,64,12),(7,35,57,41),(8,27,58,14),(9,54,30,18),(11,56,32,20),(13,50,26,22),(15,52,28,24),(17,38,53,44),(19,40,55,46),(21,34,49,48),(23,36,51,42)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,37),(2,34),(3,39),(4,36),(5,33),(6,38),(7,35),(8,40),(9,54),(10,51),(11,56),(12,53),(13,50),(14,55),(15,52),(16,49),(17,25),(18,30),(19,27),(20,32),(21,29),(22,26),(23,31),(24,28),(41,57),(42,62),(43,59),(44,64),(45,61),(46,58),(47,63),(48,60)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E···4L4M···4S8A···8H8I8J8K8L
order122222244444···44···48···88888
size111144411112···24···44···48888

38 irreducible representations

dim11111111112222244
type+++++++++-
imageC1C2C2C2C2C2C4C4C4C4D4D4M4(2)M4(2)C4≀C2C8⋊C22C8.C22
kernelD44M4(2)D4⋊C8Q8⋊C8C4×M4(2)C4⋊M4(2)C4×C4○D4C42⋊C2C4×D4C4×Q8C2×C4○D4C42C22×C4D4Q8C4C4C4
# reps12211122222244811

Matrix representation of D44M4(2) in GL4(𝔽17) generated by

01600
1000
0010
0001
,
0400
4000
00160
00016
,
6600
61100
001015
00147
,
01300
4000
00160
0071
G:=sub<GL(4,GF(17))| [0,1,0,0,16,0,0,0,0,0,1,0,0,0,0,1],[0,4,0,0,4,0,0,0,0,0,16,0,0,0,0,16],[6,6,0,0,6,11,0,0,0,0,10,14,0,0,15,7],[0,4,0,0,13,0,0,0,0,0,16,7,0,0,0,1] >;

D44M4(2) in GAP, Magma, Sage, TeX

D_4\rtimes_4M_4(2)
% in TeX

G:=Group("D4:4M4(2)");
// GroupNames label

G:=SmallGroup(128,221);
// by ID

G=gap.SmallGroup(128,221);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,1430,387,1123,570,136,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a*b,d*b*d=a^2*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽