Copied to
clipboard

G = Q8.M4(2)  order 128 = 27

2nd non-split extension by Q8 of M4(2) acting via M4(2)/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8.2M4(2), C42.644C23, Q8⋊C8.8C2, C82C8.6C2, C8⋊C8.2C2, C2.8(C8○D8), (C2×C8).309D4, (C2×Q16).7C4, (C8×Q8).15C2, C2.D8.12C4, C4.36(C8○D4), Q8⋊C4.8C4, (C4×Q16).12C2, C84Q8.12C2, C2.14(C89D4), C4⋊C8.278C22, (C4×C8).316C22, C22.135(C4×D4), C4.30(C2×M4(2)), (C4×Q8).12C22, C2.4(Q16⋊C4), C4.138(C8.C22), C4⋊C4.138(C2×C4), (C2×C8).105(C2×C4), (C2×C4).1480(C2×D4), (C2×Q8).137(C2×C4), (C2×C4).505(C4○D4), (C2×C4).336(C22×C4), SmallGroup(128,319)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — Q8.M4(2)
C1C2C22C2×C4C42C4×C8C8×Q8 — Q8.M4(2)
C1C2C2×C4 — Q8.M4(2)
C1C2×C4C4×C8 — Q8.M4(2)
C1C22C22C42 — Q8.M4(2)

Generators and relations for Q8.M4(2)
 G = < a,b,c,d | a4=c8=1, b2=d2=a2, bab-1=cac-1=dad-1=a-1, cbc-1=dbd-1=a-1b, dcd-1=a2c5 >

Subgroups: 120 in 76 conjugacy classes, 42 normal (40 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C4×C8, C4×C8, C8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C2.D8, C4×Q8, C2×Q16, C8⋊C8, Q8⋊C8, C82C8, C4×Q16, C8×Q8, C84Q8, Q8.M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, C4×D4, C2×M4(2), C8○D4, C8.C22, C89D4, Q16⋊C4, C8○D8, Q8.M4(2)

Smallest permutation representation of Q8.M4(2)
Regular action on 128 points
Generators in S128
(1 44 97 73)(2 74 98 45)(3 46 99 75)(4 76 100 47)(5 48 101 77)(6 78 102 41)(7 42 103 79)(8 80 104 43)(9 33 71 126)(10 127 72 34)(11 35 65 128)(12 121 66 36)(13 37 67 122)(14 123 68 38)(15 39 69 124)(16 125 70 40)(17 86 110 49)(18 50 111 87)(19 88 112 51)(20 52 105 81)(21 82 106 53)(22 54 107 83)(23 84 108 55)(24 56 109 85)(25 57 118 94)(26 95 119 58)(27 59 120 96)(28 89 113 60)(29 61 114 90)(30 91 115 62)(31 63 116 92)(32 93 117 64)
(1 117 97 32)(2 57 98 94)(3 119 99 26)(4 59 100 96)(5 113 101 28)(6 61 102 90)(7 115 103 30)(8 63 104 92)(9 21 71 106)(10 83 72 54)(11 23 65 108)(12 85 66 56)(13 17 67 110)(14 87 68 50)(15 19 69 112)(16 81 70 52)(18 123 111 38)(20 125 105 40)(22 127 107 34)(24 121 109 36)(25 45 118 74)(27 47 120 76)(29 41 114 78)(31 43 116 80)(33 53 126 82)(35 55 128 84)(37 49 122 86)(39 51 124 88)(42 91 79 62)(44 93 73 64)(46 95 75 58)(48 89 77 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 21 97 106)(2 111 98 18)(3 23 99 108)(4 105 100 20)(5 17 101 110)(6 107 102 22)(7 19 103 112)(8 109 104 24)(9 64 71 93)(10 90 72 61)(11 58 65 95)(12 92 66 63)(13 60 67 89)(14 94 68 57)(15 62 69 91)(16 96 70 59)(25 123 118 38)(26 35 119 128)(27 125 120 40)(28 37 113 122)(29 127 114 34)(30 39 115 124)(31 121 116 36)(32 33 117 126)(41 83 78 54)(42 51 79 88)(43 85 80 56)(44 53 73 82)(45 87 74 50)(46 55 75 84)(47 81 76 52)(48 49 77 86)

G:=sub<Sym(128)| (1,44,97,73)(2,74,98,45)(3,46,99,75)(4,76,100,47)(5,48,101,77)(6,78,102,41)(7,42,103,79)(8,80,104,43)(9,33,71,126)(10,127,72,34)(11,35,65,128)(12,121,66,36)(13,37,67,122)(14,123,68,38)(15,39,69,124)(16,125,70,40)(17,86,110,49)(18,50,111,87)(19,88,112,51)(20,52,105,81)(21,82,106,53)(22,54,107,83)(23,84,108,55)(24,56,109,85)(25,57,118,94)(26,95,119,58)(27,59,120,96)(28,89,113,60)(29,61,114,90)(30,91,115,62)(31,63,116,92)(32,93,117,64), (1,117,97,32)(2,57,98,94)(3,119,99,26)(4,59,100,96)(5,113,101,28)(6,61,102,90)(7,115,103,30)(8,63,104,92)(9,21,71,106)(10,83,72,54)(11,23,65,108)(12,85,66,56)(13,17,67,110)(14,87,68,50)(15,19,69,112)(16,81,70,52)(18,123,111,38)(20,125,105,40)(22,127,107,34)(24,121,109,36)(25,45,118,74)(27,47,120,76)(29,41,114,78)(31,43,116,80)(33,53,126,82)(35,55,128,84)(37,49,122,86)(39,51,124,88)(42,91,79,62)(44,93,73,64)(46,95,75,58)(48,89,77,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,21,97,106)(2,111,98,18)(3,23,99,108)(4,105,100,20)(5,17,101,110)(6,107,102,22)(7,19,103,112)(8,109,104,24)(9,64,71,93)(10,90,72,61)(11,58,65,95)(12,92,66,63)(13,60,67,89)(14,94,68,57)(15,62,69,91)(16,96,70,59)(25,123,118,38)(26,35,119,128)(27,125,120,40)(28,37,113,122)(29,127,114,34)(30,39,115,124)(31,121,116,36)(32,33,117,126)(41,83,78,54)(42,51,79,88)(43,85,80,56)(44,53,73,82)(45,87,74,50)(46,55,75,84)(47,81,76,52)(48,49,77,86)>;

G:=Group( (1,44,97,73)(2,74,98,45)(3,46,99,75)(4,76,100,47)(5,48,101,77)(6,78,102,41)(7,42,103,79)(8,80,104,43)(9,33,71,126)(10,127,72,34)(11,35,65,128)(12,121,66,36)(13,37,67,122)(14,123,68,38)(15,39,69,124)(16,125,70,40)(17,86,110,49)(18,50,111,87)(19,88,112,51)(20,52,105,81)(21,82,106,53)(22,54,107,83)(23,84,108,55)(24,56,109,85)(25,57,118,94)(26,95,119,58)(27,59,120,96)(28,89,113,60)(29,61,114,90)(30,91,115,62)(31,63,116,92)(32,93,117,64), (1,117,97,32)(2,57,98,94)(3,119,99,26)(4,59,100,96)(5,113,101,28)(6,61,102,90)(7,115,103,30)(8,63,104,92)(9,21,71,106)(10,83,72,54)(11,23,65,108)(12,85,66,56)(13,17,67,110)(14,87,68,50)(15,19,69,112)(16,81,70,52)(18,123,111,38)(20,125,105,40)(22,127,107,34)(24,121,109,36)(25,45,118,74)(27,47,120,76)(29,41,114,78)(31,43,116,80)(33,53,126,82)(35,55,128,84)(37,49,122,86)(39,51,124,88)(42,91,79,62)(44,93,73,64)(46,95,75,58)(48,89,77,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,21,97,106)(2,111,98,18)(3,23,99,108)(4,105,100,20)(5,17,101,110)(6,107,102,22)(7,19,103,112)(8,109,104,24)(9,64,71,93)(10,90,72,61)(11,58,65,95)(12,92,66,63)(13,60,67,89)(14,94,68,57)(15,62,69,91)(16,96,70,59)(25,123,118,38)(26,35,119,128)(27,125,120,40)(28,37,113,122)(29,127,114,34)(30,39,115,124)(31,121,116,36)(32,33,117,126)(41,83,78,54)(42,51,79,88)(43,85,80,56)(44,53,73,82)(45,87,74,50)(46,55,75,84)(47,81,76,52)(48,49,77,86) );

G=PermutationGroup([[(1,44,97,73),(2,74,98,45),(3,46,99,75),(4,76,100,47),(5,48,101,77),(6,78,102,41),(7,42,103,79),(8,80,104,43),(9,33,71,126),(10,127,72,34),(11,35,65,128),(12,121,66,36),(13,37,67,122),(14,123,68,38),(15,39,69,124),(16,125,70,40),(17,86,110,49),(18,50,111,87),(19,88,112,51),(20,52,105,81),(21,82,106,53),(22,54,107,83),(23,84,108,55),(24,56,109,85),(25,57,118,94),(26,95,119,58),(27,59,120,96),(28,89,113,60),(29,61,114,90),(30,91,115,62),(31,63,116,92),(32,93,117,64)], [(1,117,97,32),(2,57,98,94),(3,119,99,26),(4,59,100,96),(5,113,101,28),(6,61,102,90),(7,115,103,30),(8,63,104,92),(9,21,71,106),(10,83,72,54),(11,23,65,108),(12,85,66,56),(13,17,67,110),(14,87,68,50),(15,19,69,112),(16,81,70,52),(18,123,111,38),(20,125,105,40),(22,127,107,34),(24,121,109,36),(25,45,118,74),(27,47,120,76),(29,41,114,78),(31,43,116,80),(33,53,126,82),(35,55,128,84),(37,49,122,86),(39,51,124,88),(42,91,79,62),(44,93,73,64),(46,95,75,58),(48,89,77,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,21,97,106),(2,111,98,18),(3,23,99,108),(4,105,100,20),(5,17,101,110),(6,107,102,22),(7,19,103,112),(8,109,104,24),(9,64,71,93),(10,90,72,61),(11,58,65,95),(12,92,66,63),(13,60,67,89),(14,94,68,57),(15,62,69,91),(16,96,70,59),(25,123,118,38),(26,35,119,128),(27,125,120,40),(28,37,113,122),(29,127,114,34),(30,39,115,124),(31,121,116,36),(32,33,117,126),(41,83,78,54),(42,51,79,88),(43,85,80,56),(44,53,73,82),(45,87,74,50),(46,55,75,84),(47,81,76,52),(48,49,77,86)]])

38 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H4I4J4K4L4M4N8A8B8C8D8E···8R8S8T
order12224444444444444488888···888
size11111111222244448822224···488

38 irreducible representations

dim1111111111222224
type++++++++-
imageC1C2C2C2C2C2C2C4C4C4D4C4○D4M4(2)C8○D4C8○D8C8.C22
kernelQ8.M4(2)C8⋊C8Q8⋊C8C82C8C4×Q16C8×Q8C84Q8Q8⋊C4C2.D8C2×Q16C2×C8C2×C4Q8C4C2C4
# reps1121111422224482

Matrix representation of Q8.M4(2) in GL4(𝔽17) generated by

11500
11600
00160
00016
,
0700
12000
0009
0020
,
91600
0800
0080
0009
,
13800
0400
0002
0090
G:=sub<GL(4,GF(17))| [1,1,0,0,15,16,0,0,0,0,16,0,0,0,0,16],[0,12,0,0,7,0,0,0,0,0,0,2,0,0,9,0],[9,0,0,0,16,8,0,0,0,0,8,0,0,0,0,9],[13,0,0,0,8,4,0,0,0,0,0,9,0,0,2,0] >;

Q8.M4(2) in GAP, Magma, Sage, TeX

Q_8.M_4(2)
% in TeX

G:=Group("Q8.M4(2)");
// GroupNames label

G:=SmallGroup(128,319);
// by ID

G=gap.SmallGroup(128,319);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,2102,100,1123,570,136,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=1,b^2=d^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^-1*b,d*c*d^-1=a^2*c^5>;
// generators/relations

׿
×
𝔽