Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C8

Direct product G=NxQ with N=C2xD4 and Q=C8
dρLabelID
D4xC2xC864D4xC2xC8128,1658

Semidirect products G=N:Q with N=C2xD4 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2xD4):1C8 = (C2xC4).98D8φ: C8/C2C4 ⊆ Out C2xD464(C2xD4):1C8128,2
(C2xD4):2C8 = (C2xD4):C8φ: C8/C2C4 ⊆ Out C2xD432(C2xD4):2C8128,50
(C2xD4):3C8 = C23.8M4(2)φ: C8/C4C2 ⊆ Out C2xD432(C2xD4):3C8128,191
(C2xD4):4C8 = C42.393D4φ: C8/C4C2 ⊆ Out C2xD432(C2xD4):4C8128,192
(C2xD4):5C8 = C2xD4:C8φ: C8/C4C2 ⊆ Out C2xD464(C2xD4):5C8128,206
(C2xD4):6C8 = C42.398D4φ: C8/C4C2 ⊆ Out C2xD432(C2xD4):6C8128,210
(C2xD4):7C8 = C23.22M4(2)φ: C8/C4C2 ⊆ Out C2xD464(C2xD4):7C8128,601
(C2xD4):8C8 = C42.325D4φ: C8/C4C2 ⊆ Out C2xD464(C2xD4):8C8128,686
(C2xD4):9C8 = C42.691C23φ: C8/C4C2 ⊆ Out C2xD432(C2xD4):9C8128,1704

Non-split extensions G=N.Q with N=C2xD4 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2xD4).1C8 = C23.M4(2)φ: C8/C2C4 ⊆ Out C2xD464(C2xD4).1C8128,47
(C2xD4).2C8 = C23.1M4(2)φ: C8/C2C4 ⊆ Out C2xD4324(C2xD4).2C8128,53
(C2xD4).3C8 = C8.31D8φ: C8/C2C4 ⊆ Out C2xD464(C2xD4).3C8128,62
(C2xD4).4C8 = D4:C16φ: C8/C4C2 ⊆ Out C2xD464(C2xD4).4C8128,61
(C2xD4).5C8 = (C2xD4).5C8φ: C8/C4C2 ⊆ Out C2xD464(C2xD4).5C8128,845
(C2xD4).6C8 = M5(2).19C22φ: C8/C4C2 ⊆ Out C2xD4324(C2xD4).6C8128,847
(C2xD4).7C8 = C2xD4.C8φ: C8/C4C2 ⊆ Out C2xD464(C2xD4).7C8128,848
(C2xD4).8C8 = M5(2):12C22φ: C8/C4C2 ⊆ Out C2xD4324(C2xD4).8C8128,849
(C2xD4).9C8 = C16:9D4φ: C8/C4C2 ⊆ Out C2xD464(C2xD4).9C8128,900
(C2xD4).10C8 = C16:6D4φ: C8/C4C2 ⊆ Out C2xD464(C2xD4).10C8128,901
(C2xD4).11C8 = Q8oM5(2)φ: C8/C4C2 ⊆ Out C2xD4324(C2xD4).11C8128,2139
(C2xD4).12C8 = D4xC16φ: trivial image64(C2xD4).12C8128,899
(C2xD4).13C8 = C2xD4oC16φ: trivial image64(C2xD4).13C8128,2138

׿
x
:
Z
F
o
wr
Q
<