Copied to
clipboard

G = C2xD4oC16order 128 = 27

Direct product of C2 and D4oC16

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2xD4oC16, C8.24C24, C16.14C23, M5(2):16C22, D4o(C2xC16), C16o(C2xD4), Q8o(C2xC16), C16o(C2xQ8), C8o(D4oC16), C4o(D4oC16), C4oD4.6C8, C8oD4.7C4, D4.8(C2xC8), Q8.9(C2xC8), C16o2(C4oD4), C16o(D4oC16), C16o2(C8oD4), (C2xD4).13C8, (C2xQ8).12C8, (C22xC16):15C2, (C2xC16):22C22, (C2xC16)o2M5(2), C16o2(C2xM5(2)), C16o2(C2xM4(2)), M4(2)o2(C2xC16), C4.63(C23xC4), C8.50(C22xC4), C2.11(C23xC8), C4.22(C22xC8), C23.24(C2xC8), (C2xM5(2)):22C2, (C2xC8).617C23, C8oD4.19C22, C22.4(C22xC8), (C2xM4(2)).38C4, M4(2).35(C2xC4), (C22xC8).587C22, C4oD4o(C2xC16), C16o(C2xC4oD4), C16o(C2xC8oD4), (C2xQ8)o(C2xC16), (C2xC16)o(C8oD4), (C2xC4).57(C2xC8), (C2xC8).198(C2xC4), C4oD4.38(C2xC4), (C2xC4oD4).35C4, (C2xC8oD4).24C2, (C2xC16)o(C2xM5(2)), (C2xC16)o(C2xM4(2)), (C22xC4).421(C2xC4), (C2xC4).476(C22xC4), (C2xC16)o(C2xC8oD4), (C2xC16)o(C2xC4oD4), SmallGroup(128,2138)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C2xD4oC16
C1C2C4C8C2xC8C22xC8C2xC8oD4 — C2xD4oC16
C1C2 — C2xD4oC16
C1C2xC16 — C2xD4oC16
C1C2C2C2C2C4C4C8 — C2xD4oC16

Generators and relations for C2xD4oC16
 G = < a,b,c,d | a2=b4=c2=1, d8=b2, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, cd=dc >

Subgroups: 196 in 184 conjugacy classes, 172 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, D4, Q8, C23, C16, C2xC8, C2xC8, M4(2), C22xC4, C2xD4, C2xQ8, C4oD4, C2xC16, C2xC16, M5(2), C22xC8, C2xM4(2), C8oD4, C2xC4oD4, C22xC16, C2xM5(2), D4oC16, C2xC8oD4, C2xD4oC16
Quotients: C1, C2, C4, C22, C8, C2xC4, C23, C2xC8, C22xC4, C24, C22xC8, C23xC4, D4oC16, C23xC8, C2xD4oC16

Smallest permutation representation of C2xD4oC16
On 64 points
Generators in S64
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 49)(29 50)(30 51)(31 52)(32 53)
(1 63 9 55)(2 64 10 56)(3 49 11 57)(4 50 12 58)(5 51 13 59)(6 52 14 60)(7 53 15 61)(8 54 16 62)(17 39 25 47)(18 40 26 48)(19 41 27 33)(20 42 28 34)(21 43 29 35)(22 44 30 36)(23 45 31 37)(24 46 32 38)
(1 55)(2 56)(3 57)(4 58)(5 59)(6 60)(7 61)(8 62)(9 63)(10 64)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(23 45)(24 46)(25 47)(26 48)(27 33)(28 34)(29 35)(30 36)(31 37)(32 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,49)(29,50)(30,51)(31,52)(32,53), (1,63,9,55)(2,64,10,56)(3,49,11,57)(4,50,12,58)(5,51,13,59)(6,52,14,60)(7,53,15,61)(8,54,16,62)(17,39,25,47)(18,40,26,48)(19,41,27,33)(20,42,28,34)(21,43,29,35)(22,44,30,36)(23,45,31,37)(24,46,32,38), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,63)(10,64)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,47)(26,48)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;

G:=Group( (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,49)(29,50)(30,51)(31,52)(32,53), (1,63,9,55)(2,64,10,56)(3,49,11,57)(4,50,12,58)(5,51,13,59)(6,52,14,60)(7,53,15,61)(8,54,16,62)(17,39,25,47)(18,40,26,48)(19,41,27,33)(20,42,28,34)(21,43,29,35)(22,44,30,36)(23,45,31,37)(24,46,32,38), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,63)(10,64)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,47)(26,48)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,49),(29,50),(30,51),(31,52),(32,53)], [(1,63,9,55),(2,64,10,56),(3,49,11,57),(4,50,12,58),(5,51,13,59),(6,52,14,60),(7,53,15,61),(8,54,16,62),(17,39,25,47),(18,40,26,48),(19,41,27,33),(20,42,28,34),(21,43,29,35),(22,44,30,36),(23,45,31,37),(24,46,32,38)], [(1,55),(2,56),(3,57),(4,58),(5,59),(6,60),(7,61),(8,62),(9,63),(10,64),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(23,45),(24,46),(25,47),(26,48),(27,33),(28,34),(29,35),(30,36),(31,37),(32,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])

80 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E···4J8A···8H8I···8T16A···16P16Q···16AN
order12222···244444···48···88···816···1616···16
size11112···211112···21···12···21···12···2

80 irreducible representations

dim111111111112
type+++++
imageC1C2C2C2C2C4C4C4C8C8C8D4oC16
kernelC2xD4oC16C22xC16C2xM5(2)D4oC16C2xC8oD4C2xM4(2)C8oD4C2xC4oD4C2xD4C2xQ8C4oD4C2
# reps133816821241616

Matrix representation of C2xD4oC16 in GL3(F17) generated by

1600
010
001
,
100
0016
010
,
1600
0016
0160
,
1600
0140
0014
G:=sub<GL(3,GF(17))| [16,0,0,0,1,0,0,0,1],[1,0,0,0,0,1,0,16,0],[16,0,0,0,0,16,0,16,0],[16,0,0,0,14,0,0,0,14] >;

C2xD4oC16 in GAP, Magma, Sage, TeX

C_2\times D_4\circ C_{16}
% in TeX

G:=Group("C2xD4oC16");
// GroupNames label

G:=SmallGroup(128,2138);
// by ID

G=gap.SmallGroup(128,2138);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,-2,-2,112,723,102,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^2=1,d^8=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<