Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C16

Direct product G=N×Q with N=C22 and Q=C2×C16

Semidirect products G=N:Q with N=C22 and Q=C2×C16
extensionφ:Q→Aut NdρLabelID
C221(C2×C16) = D4×C16φ: C2×C16/C16C2 ⊆ Aut C2264C2^2:1(C2xC16)128,899
C222(C2×C16) = C2×C22⋊C16φ: C2×C16/C2×C8C2 ⊆ Aut C2264C2^2:2(C2xC16)128,843

Non-split extensions G=N.Q with N=C22 and Q=C2×C16
extensionφ:Q→Aut NdρLabelID
C22.1(C2×C16) = D4○C32φ: C2×C16/C16C2 ⊆ Aut C22642C2^2.1(C2xC16)128,990
C22.2(C2×C16) = C23⋊C16φ: C2×C16/C2×C8C2 ⊆ Aut C2232C2^2.2(C2xC16)128,46
C22.3(C2×C16) = C22.M5(2)φ: C2×C16/C2×C8C2 ⊆ Aut C2264C2^2.3(C2xC16)128,54
C22.4(C2×C16) = C23.C16φ: C2×C16/C2×C8C2 ⊆ Aut C22324C2^2.4(C2xC16)128,132
C22.5(C2×C16) = C42.13C8φ: C2×C16/C2×C8C2 ⊆ Aut C2264C2^2.5(C2xC16)128,894
C22.6(C2×C16) = C22.7M5(2)central extension (φ=1)128C2^2.6(C2xC16)128,106
C22.7(C2×C16) = C325C4central extension (φ=1)128C2^2.7(C2xC16)128,129
C22.8(C2×C16) = C22⋊C32central extension (φ=1)64C2^2.8(C2xC16)128,131
C22.9(C2×C16) = C4⋊C32central extension (φ=1)128C2^2.9(C2xC16)128,153
C22.10(C2×C16) = C2×C4⋊C16central extension (φ=1)128C2^2.10(C2xC16)128,881
C22.11(C2×C16) = C2×M6(2)central extension (φ=1)64C2^2.11(C2xC16)128,989