Copied to
clipboard

G = D4oC32order 128 = 27

Central product of D4 and C32

p-group, metabelian, nilpotent (class 2), monomial

Aliases: D4oC32, Q8oC32, D4.2C16, C32oM6(2), C32oM5(2), M4(2)oC32, Q8.2C16, M6(2):7C2, C32.7C22, C16.17C23, M4(2).6C8, M5(2).4C4, C4oD4oC32, (C2xC32):9C2, C32o(C8oD4), C4.5(C2xC16), C8.13(C2xC8), C8oD4.6C4, C4oD4.5C8, C32o(D4oC16), C16.15(C2xC4), D4oC16.3C2, C4.38(C22xC8), C2.7(C22xC16), C8.69(C22xC4), C22.1(C2xC16), (C2xC16).107C22, (C2xC4).55(C2xC8), (C2xC8).197(C2xC4), SmallGroup(128,990)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — D4oC32
C1C2C4C8C16C2xC16D4oC16 — D4oC32
C1C2 — D4oC32
C1C32 — D4oC32
C1C2C2C2C2C2C2C2C2C4C4C4C4C8C8C16 — D4oC32

Generators and relations for D4oC32
 G = < a,b,c | a4=b2=1, c16=a2, bab=a-1, ac=ca, bc=cb >

Subgroups: 56 in 53 conjugacy classes, 50 normal (11 characteristic)
Quotients: C1, C2, C4, C22, C8, C2xC4, C23, C16, C2xC8, C22xC4, C2xC16, C22xC8, C22xC16, D4oC32
2C2
2C2
2C2

Smallest permutation representation of D4oC32
On 64 points
Generators in S64
(1 56 17 40)(2 57 18 41)(3 58 19 42)(4 59 20 43)(5 60 21 44)(6 61 22 45)(7 62 23 46)(8 63 24 47)(9 64 25 48)(10 33 26 49)(11 34 27 50)(12 35 28 51)(13 36 29 52)(14 37 30 53)(15 38 31 54)(16 39 32 55)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(17 56)(18 57)(19 58)(20 59)(21 60)(22 61)(23 62)(24 63)(25 64)(26 33)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,56,17,40)(2,57,18,41)(3,58,19,42)(4,59,20,43)(5,60,21,44)(6,61,22,45)(7,62,23,46)(8,63,24,47)(9,64,25,48)(10,33,26,49)(11,34,27,50)(12,35,28,51)(13,36,29,52)(14,37,30,53)(15,38,31,54)(16,39,32,55), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;

G:=Group( (1,56,17,40)(2,57,18,41)(3,58,19,42)(4,59,20,43)(5,60,21,44)(6,61,22,45)(7,62,23,46)(8,63,24,47)(9,64,25,48)(10,33,26,49)(11,34,27,50)(12,35,28,51)(13,36,29,52)(14,37,30,53)(15,38,31,54)(16,39,32,55), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,56,17,40),(2,57,18,41),(3,58,19,42),(4,59,20,43),(5,60,21,44),(6,61,22,45),(7,62,23,46),(8,63,24,47),(9,64,25,48),(10,33,26,49),(11,34,27,50),(12,35,28,51),(13,36,29,52),(14,37,30,53),(15,38,31,54),(16,39,32,55)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(17,56),(18,57),(19,58),(20,59),(21,60),(22,61),(23,62),(24,63),(25,64),(26,33),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])

80 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E8A8B8C8D8E···8J16A···16H16I···16T32A···32P32Q···32AN
order122224444488888···816···1616···1632···3232···32
size112221122211112···21···12···21···12···2

80 irreducible representations

dim11111111112
type++++
imageC1C2C2C2C4C4C8C8C16C16D4oC32
kernelD4oC32C2xC32M6(2)D4oC16M5(2)C8oD4M4(2)C4oD4D4Q8C1
# reps13316212424816

Matrix representation of D4oC32 in GL2(F97) generated by

4450
253
,
5346
9544
,
780
078
G:=sub<GL(2,GF(97))| [44,2,50,53],[53,95,46,44],[78,0,0,78] >;

D4oC32 in GAP, Magma, Sage, TeX

D_4\circ C_{32}
% in TeX

G:=Group("D4oC32");
// GroupNames label

G:=SmallGroup(128,990);
// by ID

G=gap.SmallGroup(128,990);
# by ID

G:=PCGroup([7,-2,2,2,-2,-2,-2,-2,56,723,80,102,124]);
// Polycyclic

G:=Group<a,b,c|a^4=b^2=1,c^16=a^2,b*a*b=a^-1,a*c=c*a,b*c=c*b>;
// generators/relations

Export

Subgroup lattice of D4oC32 in TeX

׿
x
:
Z
F
o
wr
Q
<