Copied to
clipboard

G = C4⋊C32order 128 = 27

The semidirect product of C4 and C32 acting via C32/C16=C2

p-group, metacyclic, nilpotent (class 2), monomial

Aliases: C4⋊C32, C16.7Q8, C16.29D4, C42.8C8, C2.3M6(2), C8.26M4(2), C4.12M5(2), C2.2(C2×C32), (C2×C32).2C2, (C4×C16).4C2, (C2×C4).4C16, (C4×C8).14C4, (C2×C8).12C8, C2.2(C4⋊C16), C4.25(C4⋊C8), C8.42(C4⋊C4), (C2×C16).10C4, C22.9(C2×C16), (C2×C16).110C22, (C2×C4).97(C2×C8), (C2×C8).261(C2×C4), SmallGroup(128,153)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C4⋊C32
C1C2C4C8C16C2×C16C4×C16 — C4⋊C32
C1C2 — C4⋊C32
C1C2×C16 — C4⋊C32
C1C2C2C2C2C2C2C2C2C4C4C4C4C8C8C2×C16 — C4⋊C32

Generators and relations for C4⋊C32
 G = < a,b | a4=b32=1, bab-1=a-1 >

2C4
2C8
2C16
2C32
2C32

Smallest permutation representation of C4⋊C32
Regular action on 128 points
Generators in S128
(1 79 105 51)(2 52 106 80)(3 81 107 53)(4 54 108 82)(5 83 109 55)(6 56 110 84)(7 85 111 57)(8 58 112 86)(9 87 113 59)(10 60 114 88)(11 89 115 61)(12 62 116 90)(13 91 117 63)(14 64 118 92)(15 93 119 33)(16 34 120 94)(17 95 121 35)(18 36 122 96)(19 65 123 37)(20 38 124 66)(21 67 125 39)(22 40 126 68)(23 69 127 41)(24 42 128 70)(25 71 97 43)(26 44 98 72)(27 73 99 45)(28 46 100 74)(29 75 101 47)(30 48 102 76)(31 77 103 49)(32 50 104 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,79,105,51)(2,52,106,80)(3,81,107,53)(4,54,108,82)(5,83,109,55)(6,56,110,84)(7,85,111,57)(8,58,112,86)(9,87,113,59)(10,60,114,88)(11,89,115,61)(12,62,116,90)(13,91,117,63)(14,64,118,92)(15,93,119,33)(16,34,120,94)(17,95,121,35)(18,36,122,96)(19,65,123,37)(20,38,124,66)(21,67,125,39)(22,40,126,68)(23,69,127,41)(24,42,128,70)(25,71,97,43)(26,44,98,72)(27,73,99,45)(28,46,100,74)(29,75,101,47)(30,48,102,76)(31,77,103,49)(32,50,104,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)>;

G:=Group( (1,79,105,51)(2,52,106,80)(3,81,107,53)(4,54,108,82)(5,83,109,55)(6,56,110,84)(7,85,111,57)(8,58,112,86)(9,87,113,59)(10,60,114,88)(11,89,115,61)(12,62,116,90)(13,91,117,63)(14,64,118,92)(15,93,119,33)(16,34,120,94)(17,95,121,35)(18,36,122,96)(19,65,123,37)(20,38,124,66)(21,67,125,39)(22,40,126,68)(23,69,127,41)(24,42,128,70)(25,71,97,43)(26,44,98,72)(27,73,99,45)(28,46,100,74)(29,75,101,47)(30,48,102,76)(31,77,103,49)(32,50,104,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,79,105,51),(2,52,106,80),(3,81,107,53),(4,54,108,82),(5,83,109,55),(6,56,110,84),(7,85,111,57),(8,58,112,86),(9,87,113,59),(10,60,114,88),(11,89,115,61),(12,62,116,90),(13,91,117,63),(14,64,118,92),(15,93,119,33),(16,34,120,94),(17,95,121,35),(18,36,122,96),(19,65,123,37),(20,38,124,66),(21,67,125,39),(22,40,126,68),(23,69,127,41),(24,42,128,70),(25,71,97,43),(26,44,98,72),(27,73,99,45),(28,46,100,74),(29,75,101,47),(30,48,102,76),(31,77,103,49),(32,50,104,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)]])

80 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H8A···8H8I8J8K8L16A···16P16Q···16X32A···32AF
order1222444444448···8888816···1616···1632···32
size1111111122221···122221···12···22···2

80 irreducible representations

dim11111111122222
type++++-
imageC1C2C2C4C4C8C8C16C32D4Q8M4(2)M5(2)M6(2)
kernelC4⋊C32C4×C16C2×C32C4×C8C2×C16C42C2×C8C2×C4C4C16C16C8C4C2
# reps1122244163211248

Matrix representation of C4⋊C32 in GL3(𝔽97) generated by

9600
0122
04496
,
5100
07649
04521
G:=sub<GL(3,GF(97))| [96,0,0,0,1,44,0,22,96],[51,0,0,0,76,45,0,49,21] >;

C4⋊C32 in GAP, Magma, Sage, TeX

C_4\rtimes C_{32}
% in TeX

G:=Group("C4:C32");
// GroupNames label

G:=SmallGroup(128,153);
// by ID

G=gap.SmallGroup(128,153);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,36,80,102,124]);
// Polycyclic

G:=Group<a,b|a^4=b^32=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C4⋊C32 in TeX

׿
×
𝔽