# Extensions 1→N→G→Q→1 with N=C23.33C23 and Q=C2

Direct product G=N×Q with N=C23.33C23 and Q=C2
dρLabelID
C2×C23.33C2364C2xC2^3.33C2^3128,2159

Semidirect products G=N:Q with N=C23.33C23 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.33C231C2 = C8⋊C22⋊C4φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:1C2128,615
C23.33C232C2 = 2+ 1+45C4φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:2C2128,1629
C23.33C233C2 = 2- 1+44C4φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:3C2128,1630
C23.33C234C2 = C42.275C23φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:4C2128,1678
C23.33C235C2 = C42.280C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:5C2128,1683
C23.33C236C2 = C42.281C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:6C2128,1684
C23.33C237C2 = C42.18C23φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:7C2128,1777
C23.33C238C2 = C42.19C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:8C2128,1778
C23.33C239C2 = (C2×D4).301D4φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:9C2128,1828
C23.33C2310C2 = (C2×D4).303D4φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:10C2128,1830
C23.33C2311C2 = (C2×D4).304D4φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:11C2128,1831
C23.33C2312C2 = C42.353C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:12C2128,1851
C23.33C2313C2 = C42.358C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:13C2128,1856
C23.33C2314C2 = C42.359C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:14C2128,1857
C23.33C2315C2 = C22.77C25φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:15C2128,2220
C23.33C2316C2 = C22.78C25φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:16C2128,2221
C23.33C2317C2 = C22.81C25φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:17C2128,2224
C23.33C2318C2 = C22.82C25φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:18C2128,2225
C23.33C2319C2 = C22.83C25φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:19C2128,2226
C23.33C2320C2 = C22.84C25φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:20C2128,2227
C23.33C2321C2 = C22.95C25φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:21C2128,2238
C23.33C2322C2 = C22.96C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:22C2128,2239
C23.33C2323C2 = C22.100C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:23C2128,2243
C23.33C2324C2 = C22.101C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:24C2128,2244
C23.33C2325C2 = C22.102C25φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:25C2128,2245
C23.33C2326C2 = C22.104C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:26C2128,2247
C23.33C2327C2 = C22.105C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:27C2128,2248
C23.33C2328C2 = C22.106C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:28C2128,2249
C23.33C2329C2 = C23.144C24φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:29C2128,2252
C23.33C2330C2 = C22.110C25φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3:30C2128,2253
C23.33C2331C2 = C22.111C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:31C2128,2254
C23.33C2332C2 = C22.113C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3:32C2128,2256
C23.33C2333C2 = C22.14C25φ: trivial image32C2^3.33C2^3:33C2128,2160
C23.33C2334C2 = C4×2+ 1+4φ: trivial image32C2^3.33C2^3:34C2128,2161
C23.33C2335C2 = C4×2- 1+4φ: trivial image64C2^3.33C2^3:35C2128,2162

Non-split extensions G=N.Q with N=C23.33C23 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.33C23.1C2 = C4≀C2⋊C4φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3.1C2128,591
C23.33C23.2C2 = C429(C2×C4)φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3.2C2128,592
C23.33C23.3C2 = C8.C22⋊C4φ: C2/C1C2 ⊆ Out C23.33C2332C2^3.33C2^3.3C2128,614
C23.33C23.4C2 = C4○D4.7Q8φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3.4C2128,1644
C23.33C23.5C2 = C4○D4.8Q8φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3.5C2128,1645
C23.33C23.6C2 = C42.276C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3.6C2128,1679
C23.33C23.7C2 = C42.22C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3.7C2128,1815
C23.33C23.8C2 = C42.23C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3.8C2128,1816
C23.33C23.9C2 = (C2×D4).302D4φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3.9C2128,1829
C23.33C23.10C2 = C42.354C23φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3.10C2128,1852
C23.33C23.11C2 = C22.92C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3.11C2128,2235
C23.33C23.12C2 = C22.93C25φ: C2/C1C2 ⊆ Out C23.33C2364C2^3.33C2^3.12C2128,2236

׿
×
𝔽