p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×D4).302D4, (C2×Q8).237D4, C2.15(Q8○D8), C4⋊C4.395C23, (C2×C8).312C23, (C2×C4).295C24, C23.246(C2×D4), (C2×Q8).70C23, C4.Q8.12C22, C2.D8.83C22, C2.24(D4○SD16), C23.47D4⋊3C2, C23.25D4⋊8C2, C22⋊C8.17C22, M4(2)⋊C4⋊27C2, C22⋊Q8.23C22, C23.38D4⋊11C2, C23.20D4⋊14C2, C23.48D4⋊13C2, (C22×C8).185C22, C22.555(C22×D4), (C22×C4).1011C23, Q8⋊C4.150C22, C4.83(C22.D4), (C2×M4(2)).77C22, (C22×Q8).293C22, C42⋊C2.124C22, C23.33C23.9C2, C23.38C23.12C2, C22.19(C22.D4), C4.105(C2×C4○D4), (C2×C4).490(C2×D4), (C2×Q8⋊C4)⋊30C2, (C2×C4).297(C4○D4), (C2×C4⋊C4).611C22, (C22×C8)⋊C2.3C2, (C2×C4○D4).140C22, C2.60(C2×C22.D4), SmallGroup(128,1829)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×D4).302D4
G = < a,b,c,d,e | a2=b4=c2=1, d4=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd-1=ebe-1=ab-1, dcd-1=ece-1=ab2c, ede-1=ab2d3 >
Subgroups: 340 in 193 conjugacy classes, 92 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C22⋊C8, Q8⋊C4, C4.Q8, C4.Q8, C2.D8, C2.D8, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C22×C8, C2×M4(2), C22×Q8, C2×C4○D4, (C22×C8)⋊C2, C2×Q8⋊C4, C23.38D4, C23.25D4, M4(2)⋊C4, C23.47D4, C23.48D4, C23.20D4, C23.33C23, C23.38C23, (C2×D4).302D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22.D4, C22×D4, C2×C4○D4, C2×C22.D4, D4○SD16, Q8○D8, (C2×D4).302D4
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(33 46)(34 47)(35 48)(36 41)(37 42)(38 43)(39 44)(40 45)
(1 59 5 63)(2 8 6 4)(3 61 7 57)(9 26 13 30)(10 16 14 12)(11 28 15 32)(17 55 21 51)(18 20 22 24)(19 49 23 53)(25 31 29 27)(33 35 37 39)(34 45 38 41)(36 47 40 43)(42 44 46 48)(50 52 54 56)(58 64 62 60)
(1 53)(2 18)(3 55)(4 20)(5 49)(6 22)(7 51)(8 24)(9 47)(10 39)(11 41)(12 33)(13 43)(14 35)(15 45)(16 37)(17 61)(19 63)(21 57)(23 59)(25 44)(26 36)(27 46)(28 38)(29 48)(30 40)(31 42)(32 34)(50 58)(52 60)(54 62)(56 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 46 5 42)(2 40 6 36)(3 44 7 48)(4 38 8 34)(9 24 13 20)(10 55 14 51)(11 22 15 18)(12 53 16 49)(17 27 21 31)(19 25 23 29)(26 54 30 50)(28 52 32 56)(33 61 37 57)(35 59 39 63)(41 58 45 62)(43 64 47 60)
G:=sub<Sym(64)| (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45), (1,59,5,63)(2,8,6,4)(3,61,7,57)(9,26,13,30)(10,16,14,12)(11,28,15,32)(17,55,21,51)(18,20,22,24)(19,49,23,53)(25,31,29,27)(33,35,37,39)(34,45,38,41)(36,47,40,43)(42,44,46,48)(50,52,54,56)(58,64,62,60), (1,53)(2,18)(3,55)(4,20)(5,49)(6,22)(7,51)(8,24)(9,47)(10,39)(11,41)(12,33)(13,43)(14,35)(15,45)(16,37)(17,61)(19,63)(21,57)(23,59)(25,44)(26,36)(27,46)(28,38)(29,48)(30,40)(31,42)(32,34)(50,58)(52,60)(54,62)(56,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,46,5,42)(2,40,6,36)(3,44,7,48)(4,38,8,34)(9,24,13,20)(10,55,14,51)(11,22,15,18)(12,53,16,49)(17,27,21,31)(19,25,23,29)(26,54,30,50)(28,52,32,56)(33,61,37,57)(35,59,39,63)(41,58,45,62)(43,64,47,60)>;
G:=Group( (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45), (1,59,5,63)(2,8,6,4)(3,61,7,57)(9,26,13,30)(10,16,14,12)(11,28,15,32)(17,55,21,51)(18,20,22,24)(19,49,23,53)(25,31,29,27)(33,35,37,39)(34,45,38,41)(36,47,40,43)(42,44,46,48)(50,52,54,56)(58,64,62,60), (1,53)(2,18)(3,55)(4,20)(5,49)(6,22)(7,51)(8,24)(9,47)(10,39)(11,41)(12,33)(13,43)(14,35)(15,45)(16,37)(17,61)(19,63)(21,57)(23,59)(25,44)(26,36)(27,46)(28,38)(29,48)(30,40)(31,42)(32,34)(50,58)(52,60)(54,62)(56,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,46,5,42)(2,40,6,36)(3,44,7,48)(4,38,8,34)(9,24,13,20)(10,55,14,51)(11,22,15,18)(12,53,16,49)(17,27,21,31)(19,25,23,29)(26,54,30,50)(28,52,32,56)(33,61,37,57)(35,59,39,63)(41,58,45,62)(43,64,47,60) );
G=PermutationGroup([[(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(33,46),(34,47),(35,48),(36,41),(37,42),(38,43),(39,44),(40,45)], [(1,59,5,63),(2,8,6,4),(3,61,7,57),(9,26,13,30),(10,16,14,12),(11,28,15,32),(17,55,21,51),(18,20,22,24),(19,49,23,53),(25,31,29,27),(33,35,37,39),(34,45,38,41),(36,47,40,43),(42,44,46,48),(50,52,54,56),(58,64,62,60)], [(1,53),(2,18),(3,55),(4,20),(5,49),(6,22),(7,51),(8,24),(9,47),(10,39),(11,41),(12,33),(13,43),(14,35),(15,45),(16,37),(17,61),(19,63),(21,57),(23,59),(25,44),(26,36),(27,46),(28,38),(29,48),(30,40),(31,42),(32,34),(50,58),(52,60),(54,62),(56,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,46,5,42),(2,40,6,36),(3,44,7,48),(4,38,8,34),(9,24,13,20),(10,55,14,51),(11,22,15,18),(12,53,16,49),(17,27,21,31),(19,25,23,29),(26,54,30,50),(28,52,32,56),(33,61,37,57),(35,59,39,63),(41,58,45,62),(43,64,47,60)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | D4○SD16 | Q8○D8 |
kernel | (C2×D4).302D4 | (C22×C8)⋊C2 | C2×Q8⋊C4 | C23.38D4 | C23.25D4 | M4(2)⋊C4 | C23.47D4 | C23.48D4 | C23.20D4 | C23.33C23 | C23.38C23 | C2×D4 | C2×Q8 | C2×C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 1 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of (C2×D4).302D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 12 |
0 | 0 | 0 | 0 | 5 | 5 |
0 | 15 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 5 |
0 | 0 | 0 | 0 | 5 | 5 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,1,0,0,0],[0,2,0,0,0,0,9,0,0,0,0,0,0,0,5,5,0,0,0,0,12,5,0,0,0,0,0,0,5,5,0,0,0,0,12,5],[0,8,0,0,0,0,15,0,0,0,0,0,0,0,0,0,12,5,0,0,0,0,5,5,0,0,12,5,0,0,0,0,5,5,0,0] >;
(C2×D4).302D4 in GAP, Magma, Sage, TeX
(C_2\times D_4)._{302}D_4
% in TeX
G:=Group("(C2xD4).302D4");
// GroupNames label
G:=SmallGroup(128,1829);
// by ID
G=gap.SmallGroup(128,1829);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,100,1018,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^4=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d^-1=e*b*e^-1=a*b^-1,d*c*d^-1=e*c*e^-1=a*b^2*c,e*d*e^-1=a*b^2*d^3>;
// generators/relations