p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×D4).303D4, C2.16(D4○D8), (C2×Q8).238D4, C2.16(Q8○D8), C4⋊C4.396C23, (C2×C8).145C23, (C2×C4).296C24, (C2×D4).83C23, C23.247(C2×D4), (C2×Q8).71C23, C4.Q8.13C22, C2.D8.84C22, C4⋊D4.24C22, C23.24D4⋊9C2, C22.D8⋊14C2, C22⋊C8.18C22, M4(2)⋊C4⋊28C2, C22⋊Q8.24C22, C23.20D4⋊15C2, C23.48D4⋊14C2, C23.36D4⋊11C2, C23.19D4⋊15C2, (C22×C8).148C22, C22.556(C22×D4), D4⋊C4.159C22, (C22×C4).1012C23, Q8⋊C4.151C22, C4.61(C22.D4), (C2×M4(2)).78C22, C23.33C23⋊10C2, C42⋊C2.125C22, C22.31C24.8C2, C22.23(C22.D4), (C2×C2.D8)⋊27C2, C4.106(C2×C4○D4), (C2×C4).491(C2×D4), (C22×C8)⋊C2⋊10C2, (C2×C4).298(C4○D4), (C2×C4⋊C4).612C22, (C2×C4○D4).141C22, C2.61(C2×C22.D4), SmallGroup(128,1830)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×D4).303D4
G = < a,b,c,d,e | a2=b4=c2=e2=1, d4=b2, ebe=ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd-1=ab-1, dcd-1=ece=ab2c, ede=ad3 >
Subgroups: 380 in 199 conjugacy classes, 92 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C22⋊C8, D4⋊C4, D4⋊C4, Q8⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22×C8, C2×M4(2), C2×C4○D4, (C22×C8)⋊C2, C23.24D4, C23.36D4, C2×C2.D8, M4(2)⋊C4, C22.D8, C23.19D4, C23.48D4, C23.20D4, C23.33C23, C22.31C24, (C2×D4).303D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22.D4, C22×D4, C2×C4○D4, C2×C22.D4, D4○D8, Q8○D8, (C2×D4).303D4
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 36)(10 37)(11 38)(12 39)(13 40)(14 33)(15 34)(16 35)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 49)(24 50)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 47 5 43)(2 60 6 64)(3 41 7 45)(4 62 8 58)(9 17 13 21)(10 56 14 52)(11 19 15 23)(12 50 16 54)(18 37 22 33)(20 39 24 35)(25 63 29 59)(26 44 30 48)(27 57 31 61)(28 46 32 42)(34 49 38 53)(36 51 40 55)
(1 52)(2 23)(3 54)(4 17)(5 56)(6 19)(7 50)(8 21)(9 62)(10 43)(11 64)(12 45)(13 58)(14 47)(15 60)(16 41)(18 25)(20 27)(22 29)(24 31)(26 49)(28 51)(30 53)(32 55)(33 63)(34 44)(35 57)(36 46)(37 59)(38 48)(39 61)(40 42)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 28)(3 7)(4 26)(6 32)(8 30)(9 38)(10 14)(11 36)(13 34)(15 40)(17 19)(18 56)(20 54)(21 23)(22 52)(24 50)(27 31)(33 37)(41 61)(42 48)(43 59)(44 46)(45 57)(47 63)(49 55)(51 53)(58 64)(60 62)
G:=sub<Sym(64)| (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,47,5,43)(2,60,6,64)(3,41,7,45)(4,62,8,58)(9,17,13,21)(10,56,14,52)(11,19,15,23)(12,50,16,54)(18,37,22,33)(20,39,24,35)(25,63,29,59)(26,44,30,48)(27,57,31,61)(28,46,32,42)(34,49,38,53)(36,51,40,55), (1,52)(2,23)(3,54)(4,17)(5,56)(6,19)(7,50)(8,21)(9,62)(10,43)(11,64)(12,45)(13,58)(14,47)(15,60)(16,41)(18,25)(20,27)(22,29)(24,31)(26,49)(28,51)(30,53)(32,55)(33,63)(34,44)(35,57)(36,46)(37,59)(38,48)(39,61)(40,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,28)(3,7)(4,26)(6,32)(8,30)(9,38)(10,14)(11,36)(13,34)(15,40)(17,19)(18,56)(20,54)(21,23)(22,52)(24,50)(27,31)(33,37)(41,61)(42,48)(43,59)(44,46)(45,57)(47,63)(49,55)(51,53)(58,64)(60,62)>;
G:=Group( (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,47,5,43)(2,60,6,64)(3,41,7,45)(4,62,8,58)(9,17,13,21)(10,56,14,52)(11,19,15,23)(12,50,16,54)(18,37,22,33)(20,39,24,35)(25,63,29,59)(26,44,30,48)(27,57,31,61)(28,46,32,42)(34,49,38,53)(36,51,40,55), (1,52)(2,23)(3,54)(4,17)(5,56)(6,19)(7,50)(8,21)(9,62)(10,43)(11,64)(12,45)(13,58)(14,47)(15,60)(16,41)(18,25)(20,27)(22,29)(24,31)(26,49)(28,51)(30,53)(32,55)(33,63)(34,44)(35,57)(36,46)(37,59)(38,48)(39,61)(40,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,28)(3,7)(4,26)(6,32)(8,30)(9,38)(10,14)(11,36)(13,34)(15,40)(17,19)(18,56)(20,54)(21,23)(22,52)(24,50)(27,31)(33,37)(41,61)(42,48)(43,59)(44,46)(45,57)(47,63)(49,55)(51,53)(58,64)(60,62) );
G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,36),(10,37),(11,38),(12,39),(13,40),(14,33),(15,34),(16,35),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,49),(24,50),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,47,5,43),(2,60,6,64),(3,41,7,45),(4,62,8,58),(9,17,13,21),(10,56,14,52),(11,19,15,23),(12,50,16,54),(18,37,22,33),(20,39,24,35),(25,63,29,59),(26,44,30,48),(27,57,31,61),(28,46,32,42),(34,49,38,53),(36,51,40,55)], [(1,52),(2,23),(3,54),(4,17),(5,56),(6,19),(7,50),(8,21),(9,62),(10,43),(11,64),(12,45),(13,58),(14,47),(15,60),(16,41),(18,25),(20,27),(22,29),(24,31),(26,49),(28,51),(30,53),(32,55),(33,63),(34,44),(35,57),(36,46),(37,59),(38,48),(39,61),(40,42)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,28),(3,7),(4,26),(6,32),(8,30),(9,38),(10,14),(11,36),(13,34),(15,40),(17,19),(18,56),(20,54),(21,23),(22,52),(24,50),(27,31),(33,37),(41,61),(42,48),(43,59),(44,46),(45,57),(47,63),(49,55),(51,53),(58,64),(60,62)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | D4○D8 | Q8○D8 |
kernel | (C2×D4).303D4 | (C22×C8)⋊C2 | C23.24D4 | C23.36D4 | C2×C2.D8 | M4(2)⋊C4 | C22.D8 | C23.19D4 | C23.48D4 | C23.20D4 | C23.33C23 | C22.31C24 | C2×D4 | C2×Q8 | C2×C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of (C2×D4).303D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 3 | 0 |
0 | 0 | 0 | 11 | 0 | 3 |
0 | 0 | 16 | 0 | 6 | 0 |
0 | 0 | 0 | 16 | 0 | 6 |
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 15 |
0 | 0 | 8 | 0 | 2 | 0 |
0 | 0 | 0 | 7 | 0 | 8 |
0 | 0 | 10 | 0 | 9 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
13 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 14 | 6 | 11 |
0 | 0 | 3 | 3 | 6 | 6 |
0 | 0 | 14 | 3 | 14 | 3 |
0 | 0 | 14 | 14 | 14 | 14 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,2,1,0,0,0,0,0,0,11,0,16,0,0,0,0,11,0,16,0,0,3,0,6,0,0,0,0,3,0,6],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,0,8,0,10,0,0,9,0,7,0,0,0,0,2,0,9,0,0,15,0,8,0],[13,13,0,0,0,0,0,4,0,0,0,0,0,0,3,3,14,14,0,0,14,3,3,14,0,0,6,6,14,14,0,0,11,6,3,14],[1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;
(C2×D4).303D4 in GAP, Magma, Sage, TeX
(C_2\times D_4)._{303}D_4
% in TeX
G:=Group("(C2xD4).303D4");
// GroupNames label
G:=SmallGroup(128,1830);
// by ID
G=gap.SmallGroup(128,1830);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,100,1018,248,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=e^2=1,d^4=b^2,e*b*e=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d^-1=a*b^-1,d*c*d^-1=e*c*e=a*b^2*c,e*d*e=a*d^3>;
// generators/relations