p-group, metabelian, nilpotent (class 3), monomial
Aliases: 2- 1+4⋊4C4, Q8○(D4⋊C4), D4○(Q8⋊C4), C4○D4.51D4, C4.9(C23×C4), C2.1(Q8○D8), (C2×D4).344D4, (C2×Q8).263D4, C4⋊C4.345C23, (C2×C4).179C24, (C2×C8).469C23, C2.2(D4○SD16), D4.21(C22×C4), C4.144(C22×D4), C23.432(C2×D4), Q8.21(C22×C4), D4.20(C22⋊C4), (C2×D4).363C23, Q8.20(C22⋊C4), (C2×Q8).336C23, C23.36D4⋊37C2, C23.38D4⋊31C2, C23.24D4⋊36C2, (C22×C8).425C22, (C22×C4).903C23, C22.129(C22×D4), (C2×2- 1+4).5C2, D4⋊C4.193C22, C42⋊C2.77C22, C23.33C23⋊3C2, Q8⋊C4.193C22, (C22×Q8).257C22, (C2×M4(2)).334C22, C4○D4⋊2(C2×C4), (C2×C8○D4)⋊18C2, (C2×Q8)⋊18(C2×C4), (C2×Q8)○(D4⋊C4), (C2×C4).447(C2×D4), C4.34(C2×C22⋊C4), (C2×Q8⋊C4)⋊51C2, (C2×C4).63(C22×C4), C22.7(C2×C22⋊C4), (C2×C4⋊C4).571C22, (C2×C4○D4).85C22, C2.41(C22×C22⋊C4), SmallGroup(128,1630)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for 2- 1+4⋊4C4
G = < a,b,c,d,e | a4=b2=e4=1, c2=d2=a2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a2c, ece-1=cd, ede-1=a2d >
Subgroups: 588 in 363 conjugacy classes, 172 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, D4⋊C4, D4⋊C4, Q8⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22×C8, C2×M4(2), C8○D4, C22×Q8, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2- 1+4, 2- 1+4, C2×Q8⋊C4, C23.24D4, C23.36D4, C23.38D4, C23.33C23, C2×C8○D4, C2×2- 1+4, 2- 1+4⋊4C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C2×C22⋊C4, C23×C4, C22×D4, C22×C22⋊C4, D4○SD16, Q8○D8, 2- 1+4⋊4C4
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 22)(2 21)(3 24)(4 23)(5 12)(6 11)(7 10)(8 9)(13 43)(14 42)(15 41)(16 44)(17 30)(18 29)(19 32)(20 31)(25 33)(26 36)(27 35)(28 34)(37 51)(38 50)(39 49)(40 52)(45 58)(46 57)(47 60)(48 59)(53 62)(54 61)(55 64)(56 63)
(1 30 3 32)(2 31 4 29)(5 15 7 13)(6 16 8 14)(9 42 11 44)(10 43 12 41)(17 24 19 22)(18 21 20 23)(25 46 27 48)(26 47 28 45)(33 57 35 59)(34 58 36 60)(37 54 39 56)(38 55 40 53)(49 63 51 61)(50 64 52 62)
(1 9 3 11)(2 10 4 12)(5 21 7 23)(6 22 8 24)(13 20 15 18)(14 17 16 19)(25 61 27 63)(26 62 28 64)(29 43 31 41)(30 44 32 42)(33 54 35 56)(34 55 36 53)(37 59 39 57)(38 60 40 58)(45 50 47 52)(46 51 48 49)
(1 63 31 45)(2 64 32 46)(3 61 29 47)(4 62 30 48)(5 36 16 37)(6 33 13 38)(7 34 14 39)(8 35 15 40)(9 27 41 52)(10 28 42 49)(11 25 43 50)(12 26 44 51)(17 59 23 53)(18 60 24 54)(19 57 21 55)(20 58 22 56)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,22)(2,21)(3,24)(4,23)(5,12)(6,11)(7,10)(8,9)(13,43)(14,42)(15,41)(16,44)(17,30)(18,29)(19,32)(20,31)(25,33)(26,36)(27,35)(28,34)(37,51)(38,50)(39,49)(40,52)(45,58)(46,57)(47,60)(48,59)(53,62)(54,61)(55,64)(56,63), (1,30,3,32)(2,31,4,29)(5,15,7,13)(6,16,8,14)(9,42,11,44)(10,43,12,41)(17,24,19,22)(18,21,20,23)(25,46,27,48)(26,47,28,45)(33,57,35,59)(34,58,36,60)(37,54,39,56)(38,55,40,53)(49,63,51,61)(50,64,52,62), (1,9,3,11)(2,10,4,12)(5,21,7,23)(6,22,8,24)(13,20,15,18)(14,17,16,19)(25,61,27,63)(26,62,28,64)(29,43,31,41)(30,44,32,42)(33,54,35,56)(34,55,36,53)(37,59,39,57)(38,60,40,58)(45,50,47,52)(46,51,48,49), (1,63,31,45)(2,64,32,46)(3,61,29,47)(4,62,30,48)(5,36,16,37)(6,33,13,38)(7,34,14,39)(8,35,15,40)(9,27,41,52)(10,28,42,49)(11,25,43,50)(12,26,44,51)(17,59,23,53)(18,60,24,54)(19,57,21,55)(20,58,22,56)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,22)(2,21)(3,24)(4,23)(5,12)(6,11)(7,10)(8,9)(13,43)(14,42)(15,41)(16,44)(17,30)(18,29)(19,32)(20,31)(25,33)(26,36)(27,35)(28,34)(37,51)(38,50)(39,49)(40,52)(45,58)(46,57)(47,60)(48,59)(53,62)(54,61)(55,64)(56,63), (1,30,3,32)(2,31,4,29)(5,15,7,13)(6,16,8,14)(9,42,11,44)(10,43,12,41)(17,24,19,22)(18,21,20,23)(25,46,27,48)(26,47,28,45)(33,57,35,59)(34,58,36,60)(37,54,39,56)(38,55,40,53)(49,63,51,61)(50,64,52,62), (1,9,3,11)(2,10,4,12)(5,21,7,23)(6,22,8,24)(13,20,15,18)(14,17,16,19)(25,61,27,63)(26,62,28,64)(29,43,31,41)(30,44,32,42)(33,54,35,56)(34,55,36,53)(37,59,39,57)(38,60,40,58)(45,50,47,52)(46,51,48,49), (1,63,31,45)(2,64,32,46)(3,61,29,47)(4,62,30,48)(5,36,16,37)(6,33,13,38)(7,34,14,39)(8,35,15,40)(9,27,41,52)(10,28,42,49)(11,25,43,50)(12,26,44,51)(17,59,23,53)(18,60,24,54)(19,57,21,55)(20,58,22,56) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,22),(2,21),(3,24),(4,23),(5,12),(6,11),(7,10),(8,9),(13,43),(14,42),(15,41),(16,44),(17,30),(18,29),(19,32),(20,31),(25,33),(26,36),(27,35),(28,34),(37,51),(38,50),(39,49),(40,52),(45,58),(46,57),(47,60),(48,59),(53,62),(54,61),(55,64),(56,63)], [(1,30,3,32),(2,31,4,29),(5,15,7,13),(6,16,8,14),(9,42,11,44),(10,43,12,41),(17,24,19,22),(18,21,20,23),(25,46,27,48),(26,47,28,45),(33,57,35,59),(34,58,36,60),(37,54,39,56),(38,55,40,53),(49,63,51,61),(50,64,52,62)], [(1,9,3,11),(2,10,4,12),(5,21,7,23),(6,22,8,24),(13,20,15,18),(14,17,16,19),(25,61,27,63),(26,62,28,64),(29,43,31,41),(30,44,32,42),(33,54,35,56),(34,55,36,53),(37,59,39,57),(38,60,40,58),(45,50,47,52),(46,51,48,49)], [(1,63,31,45),(2,64,32,46),(3,61,29,47),(4,62,30,48),(5,36,16,37),(6,33,13,38),(7,34,14,39),(8,35,15,40),(9,27,41,52),(10,28,42,49),(11,25,43,50),(12,26,44,51),(17,59,23,53),(18,60,24,54),(19,57,21,55),(20,58,22,56)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4V | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D4 | D4○SD16 | Q8○D8 |
kernel | 2- 1+4⋊4C4 | C2×Q8⋊C4 | C23.24D4 | C23.36D4 | C23.38D4 | C23.33C23 | C2×C8○D4 | C2×2- 1+4 | 2- 1+4 | C2×D4 | C2×Q8 | C4○D4 | C2 | C2 |
# reps | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 16 | 3 | 1 | 4 | 2 | 2 |
Matrix representation of 2- 1+4⋊4C4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 16 | 16 | 2 |
0 | 0 | 0 | 7 | 1 | 0 |
0 | 0 | 0 | 1 | 10 | 0 |
0 | 0 | 10 | 8 | 1 | 9 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 10 | 0 |
0 | 0 | 6 | 10 | 10 | 14 |
0 | 0 | 8 | 16 | 16 | 2 |
0 | 0 | 7 | 9 | 16 | 8 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 1 | 1 | 15 |
0 | 0 | 0 | 7 | 1 | 0 |
0 | 0 | 0 | 1 | 10 | 0 |
0 | 0 | 7 | 0 | 10 | 8 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 1 | 15 |
0 | 0 | 16 | 0 | 1 | 16 |
0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 7 | 6 | 11 |
0 | 0 | 7 | 1 | 0 | 6 |
0 | 0 | 16 | 7 | 0 | 9 |
0 | 0 | 7 | 0 | 10 | 6 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,10,0,0,16,7,1,8,0,0,16,1,10,1,0,0,2,0,0,9],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,6,8,7,0,0,1,10,16,9,0,0,10,10,16,16,0,0,0,14,2,8],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,7,0,0,1,7,1,0,0,0,1,1,10,10,0,0,15,0,0,8],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,16,16,0,0,1,0,1,0,0,0,0,0,1,1,0,0,0,0,15,16],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,10,7,16,7,0,0,7,1,7,0,0,0,6,0,0,10,0,0,11,6,9,6] >;
2- 1+4⋊4C4 in GAP, Magma, Sage, TeX
2_-^{1+4}\rtimes_4C_4
% in TeX
G:=Group("ES-(2,2):4C4");
// GroupNames label
G:=SmallGroup(128,1630);
// by ID
G=gap.SmallGroup(128,1630);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,456,521,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^2=e^4=1,c^2=d^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^2*c,e*c*e^-1=c*d,e*d*e^-1=a^2*d>;
// generators/relations