Extensions 1→N→G→Q→1 with N=C2 and Q=C4×SD16

Direct product G=N×Q with N=C2 and Q=C4×SD16
dρLabelID
C2×C4×SD1664C2xC4xSD16128,1669


Non-split extensions G=N.Q with N=C2 and Q=C4×SD16
extensionφ:Q→Aut NdρLabelID
C2.1(C4×SD16) = C8×SD16central extension (φ=1)64C2.1(C4xSD16)128,308
C2.2(C4×SD16) = C4×D4⋊C4central extension (φ=1)64C2.2(C4xSD16)128,492
C2.3(C4×SD16) = C4×Q8⋊C4central extension (φ=1)128C2.3(C4xSD16)128,493
C2.4(C4×SD16) = C4×C4.Q8central extension (φ=1)128C2.4(C4xSD16)128,506
C2.5(C4×SD16) = C812SD16central stem extension (φ=1)64C2.5(C4xSD16)128,314
C2.6(C4×SD16) = C815SD16central stem extension (φ=1)64C2.6(C4xSD16)128,315
C2.7(C4×SD16) = C89SD16central stem extension (φ=1)64C2.7(C4xSD16)128,322
C2.8(C4×SD16) = D4⋊(C4⋊C4)central stem extension (φ=1)64C2.8(C4xSD16)128,596
C2.9(C4×SD16) = Q8⋊C4⋊C4central stem extension (φ=1)128C2.9(C4xSD16)128,597
C2.10(C4×SD16) = (C2×SD16)⋊14C4central stem extension (φ=1)64C2.10(C4xSD16)128,609
C2.11(C4×SD16) = (C2×SD16)⋊15C4central stem extension (φ=1)64C2.11(C4xSD16)128,612
C2.12(C4×SD16) = C4.Q89C4central stem extension (φ=1)128C2.12(C4xSD16)128,651
C2.13(C4×SD16) = C4.Q810C4central stem extension (φ=1)128C2.13(C4xSD16)128,652
C2.14(C4×SD16) = C4.67(C4×D4)central stem extension (φ=1)64C2.14(C4xSD16)128,658
C2.15(C4×SD16) = C4.68(C4×D4)central stem extension (φ=1)128C2.15(C4xSD16)128,659
C2.16(C4×SD16) = C2.(C88D4)central stem extension (φ=1)128C2.16(C4xSD16)128,665
C2.17(C4×SD16) = C2.(C87D4)central stem extension (φ=1)64C2.17(C4xSD16)128,666
C2.18(C4×SD16) = C87(C4⋊C4)central stem extension (φ=1)128C2.18(C4xSD16)128,673
C2.19(C4×SD16) = (C2×C4)⋊9SD16central stem extension (φ=1)64C2.19(C4xSD16)128,700

׿
×
𝔽