direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4×SD16, C42.72C22, C8⋊5(C2×C4), (C4×C8)⋊11C2, Q8⋊1(C2×C4), (C4×Q8)⋊1C2, C4○2(C4.Q8), C4.Q8⋊14C2, D4.1(C2×C4), (C4×D4).4C2, C2.13(C4×D4), (C2×C4).52D4, C2.4(C4○D8), C4.2(C4○D4), C4○3(D4⋊C4), C2.4(C2×SD16), C4○2(Q8⋊C4), Q8⋊C4⋊21C2, D4⋊C4.8C2, C4⋊C4.51C22, (C2×C8).63C22, C4.10(C22×C4), (C2×C4).74C23, (C2×SD16).5C2, C22.52(C2×D4), (C2×D4).51C22, (C2×Q8).44C22, SmallGroup(64,119)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4×SD16
G = < a,b,c | a4=b8=c2=1, ab=ba, ac=ca, cbc=b3 >
Subgroups: 101 in 61 conjugacy classes, 37 normal (25 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C4×SD16
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, SD16, C22×C4, C2×D4, C4○D4, C4×D4, C2×SD16, C4○D8, C4×SD16
Character table of C4×SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | 1 | i | -i | -1 | -1 | -i | 1 | i | -i | i | -i | 1 | -i | 1 | i | -1 | i | -1 | linear of order 4 |
ρ10 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | 1 | -i | i | -1 | 1 | -i | -1 | i | -i | i | i | 1 | i | 1 | -i | -1 | -i | -1 | linear of order 4 |
ρ11 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | 1 | -i | i | -1 | -1 | -i | 1 | -i | i | i | -i | -1 | -i | -1 | i | 1 | i | 1 | linear of order 4 |
ρ12 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | 1 | i | -i | -1 | 1 | -i | -1 | -i | i | i | i | -1 | i | -1 | -i | 1 | -i | 1 | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | 1 | i | -i | -1 | -1 | i | 1 | i | -i | -i | i | -1 | i | -1 | -i | 1 | -i | 1 | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | 1 | -i | i | -1 | 1 | i | -1 | i | -i | -i | -i | -1 | -i | -1 | i | 1 | i | 1 | linear of order 4 |
ρ15 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | 1 | -i | i | -1 | -1 | i | 1 | -i | i | -i | i | 1 | i | 1 | -i | -1 | -i | -1 | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | 1 | i | -i | -1 | 1 | i | -1 | -i | i | -i | -i | 1 | -i | 1 | i | -1 | i | -1 | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | -2i | 2i | -2 | 2i | -2i | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | 2i | -2i | -2 | -2i | 2i | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√-2 | √2 | √-2 | √2 | √-2 | -√2 | -√-2 | complex lifted from C4○D8 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √-2 | √2 | -√-2 | √2 | -√-2 | -√2 | √-2 | complex lifted from C4○D8 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√-2 | -√2 | √-2 | -√2 | √-2 | √2 | -√-2 | complex lifted from C4○D8 |
ρ28 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √-2 | -√2 | -√-2 | -√2 | -√-2 | √2 | √-2 | complex lifted from C4○D8 |
(1 17 31 12)(2 18 32 13)(3 19 25 14)(4 20 26 15)(5 21 27 16)(6 22 28 9)(7 23 29 10)(8 24 30 11)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 31)(2 26)(3 29)(4 32)(5 27)(6 30)(7 25)(8 28)(9 24)(10 19)(11 22)(12 17)(13 20)(14 23)(15 18)(16 21)
G:=sub<Sym(32)| (1,17,31,12)(2,18,32,13)(3,19,25,14)(4,20,26,15)(5,21,27,16)(6,22,28,9)(7,23,29,10)(8,24,30,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,31)(2,26)(3,29)(4,32)(5,27)(6,30)(7,25)(8,28)(9,24)(10,19)(11,22)(12,17)(13,20)(14,23)(15,18)(16,21)>;
G:=Group( (1,17,31,12)(2,18,32,13)(3,19,25,14)(4,20,26,15)(5,21,27,16)(6,22,28,9)(7,23,29,10)(8,24,30,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,31)(2,26)(3,29)(4,32)(5,27)(6,30)(7,25)(8,28)(9,24)(10,19)(11,22)(12,17)(13,20)(14,23)(15,18)(16,21) );
G=PermutationGroup([[(1,17,31,12),(2,18,32,13),(3,19,25,14),(4,20,26,15),(5,21,27,16),(6,22,28,9),(7,23,29,10),(8,24,30,11)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,31),(2,26),(3,29),(4,32),(5,27),(6,30),(7,25),(8,28),(9,24),(10,19),(11,22),(12,17),(13,20),(14,23),(15,18),(16,21)]])
C4×SD16 is a maximal subgroup of
SD16⋊C8 C8⋊12SD16 C8⋊15SD16 D4.M4(2) Q8⋊2M4(2) C8⋊9SD16 C8⋊M4(2) C42.222D4 C42.384D4 C42.223D4 C42.225D4 C42.450D4 C42.451D4 C42.226D4 C42.352C23 C42.353C23 C42.354C23 C42.355C23 C42.357C23 C42.359C23 C42.360C23 C42.308D4 C42.256D4 C42.385C23 C42.390C23 SD16⋊3D4 SD16⋊10D4 D4⋊7SD16 C42.461C23 D4⋊8SD16 C42.467C23 C42.472C23 C42.473C23 C42.478C23 C42.480C23 D4⋊9SD16 C42.486C23 C42.489C23 C42.492C23 C42.494C23 C42.498C23 Q8⋊7SD16 C42.501C23 C42.502C23 Q8⋊8SD16 C42.505C23 C42.506C23 C42.509C23 C42.510C23 C42.512C23 C42.513C23 C42.514C23 C42.517C23 SD16⋊4Q8 SD16⋊Q8 SD16⋊2Q8 SD16⋊3Q8 C42.73C23 C42.531C23
C2p.(C4×D4): C42.275C23 C42.276C23 C42.278C23 C42.281C23 Dic3⋊6SD16 Dic3⋊7SD16 Dic3⋊8SD16 Dic5⋊6SD16 ...
C8⋊pD4⋊C2: C42.365D4 C42.255D4 C42.386C23 C42.391C23 SD16⋊1D4 SD16⋊2D4 SD16⋊11D4 C42.466C23 ...
C4×SD16 is a maximal quotient of
C8⋊12SD16 C8⋊15SD16 C8⋊9SD16 C4.Q8⋊9C4 C4.Q8⋊10C4 C8⋊7(C4⋊C4)
C2p.(C4×D4): D4⋊(C4⋊C4) Q8⋊C4⋊C4 (C2×SD16)⋊14C4 (C2×SD16)⋊15C4 C4.67(C4×D4) C4.68(C4×D4) C2.(C8⋊8D4) C2.(C8⋊7D4) ...
Matrix representation of C4×SD16 ►in GL3(𝔽17) generated by
13 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
1 | 0 | 0 |
0 | 10 | 7 |
0 | 5 | 0 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 1 | 16 |
G:=sub<GL(3,GF(17))| [13,0,0,0,16,0,0,0,16],[1,0,0,0,10,5,0,7,0],[1,0,0,0,1,1,0,0,16] >;
C4×SD16 in GAP, Magma, Sage, TeX
C_4\times {\rm SD}_{16}
% in TeX
G:=Group("C4xSD16");
// GroupNames label
G:=SmallGroup(64,119);
// by ID
G=gap.SmallGroup(64,119);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,199,86,963,489,117]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations
Export