Copied to
clipboard

G = C8:12SD16order 128 = 27

3rd semidirect product of C8 and SD16 acting via SD16/D4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C8:12SD16, D4.1M4(2), C42.639C23, Q8:C8:6C2, C8:C8:17C2, C8:2C8:28C2, C4.Q8.7C4, D4:C8.12C2, C8:4Q8:28C2, (C8xD4).15C2, (C2xC8).378D4, C2.5(C4xSD16), D4:C4.6C4, C4.31(C8oD4), C2.9(C8:9D4), Q8:C4.6C4, (C2xSD16).3C4, (C4xSD16).9C2, C4.129(C4oD8), (C4xQ8).9C22, C2.7(C8.26D4), C4:C8.221C22, (C4xC8).238C22, C4.101(C2xSD16), C22.130(C4xD4), C4.25(C2xM4(2)), (C4xD4).272C22, C4:C4.133(C2xC4), (C2xC8).102(C2xC4), (C2xQ8).51(C2xC4), (C2xD4).153(C2xC4), (C2xC4).1475(C2xD4), (C2xC4).500(C4oD4), (C2xC4).331(C22xC4), SmallGroup(128,314)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C8:12SD16
C1C2C22C2xC4C42C4xC8C8xD4 — C8:12SD16
C1C2C2xC4 — C8:12SD16
C1C2xC4C4xC8 — C8:12SD16
C1C22C22C42 — C8:12SD16

Generators and relations for C8:12SD16
 G = < a,b,c | a8=b8=c2=1, bab-1=a5, ac=ca, cbc=b3 >

Subgroups: 152 in 84 conjugacy classes, 44 normal (40 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, D4, D4, Q8, C23, C42, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, SD16, C22xC4, C2xD4, C2xQ8, C4xC8, C8:C4, C22:C8, D4:C4, Q8:C4, C4:C8, C4:C8, C4.Q8, C4xD4, C4xQ8, C22xC8, C2xSD16, C8:C8, D4:C8, Q8:C8, C8:2C8, C8xD4, C4xSD16, C8:4Q8, C8:12SD16
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, M4(2), SD16, C22xC4, C2xD4, C4oD4, C4xD4, C2xM4(2), C8oD4, C2xSD16, C4oD8, C8:9D4, C4xSD16, C8.26D4, C8:12SD16

Smallest permutation representation of C8:12SD16
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 46 36 62 31 20 12 49)(2 43 37 59 32 17 13 54)(3 48 38 64 25 22 14 51)(4 45 39 61 26 19 15 56)(5 42 40 58 27 24 16 53)(6 47 33 63 28 21 9 50)(7 44 34 60 29 18 10 55)(8 41 35 57 30 23 11 52)
(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 54)(18 55)(19 56)(20 49)(21 50)(22 51)(23 52)(24 53)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,46,36,62,31,20,12,49)(2,43,37,59,32,17,13,54)(3,48,38,64,25,22,14,51)(4,45,39,61,26,19,15,56)(5,42,40,58,27,24,16,53)(6,47,33,63,28,21,9,50)(7,44,34,60,29,18,10,55)(8,41,35,57,30,23,11,52), (9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,54)(18,55)(19,56)(20,49)(21,50)(22,51)(23,52)(24,53)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,46,36,62,31,20,12,49)(2,43,37,59,32,17,13,54)(3,48,38,64,25,22,14,51)(4,45,39,61,26,19,15,56)(5,42,40,58,27,24,16,53)(6,47,33,63,28,21,9,50)(7,44,34,60,29,18,10,55)(8,41,35,57,30,23,11,52), (9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,54)(18,55)(19,56)(20,49)(21,50)(22,51)(23,52)(24,53)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,46,36,62,31,20,12,49),(2,43,37,59,32,17,13,54),(3,48,38,64,25,22,14,51),(4,45,39,61,26,19,15,56),(5,42,40,58,27,24,16,53),(6,47,33,63,28,21,9,50),(7,44,34,60,29,18,10,55),(8,41,35,57,30,23,11,52)], [(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,54),(18,55),(19,56),(20,49),(21,50),(22,51),(23,52),(24,53),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L8A8B8C8D8E···8R8S8T
order12222244444444444488888···888
size11114411112222448822224···488

38 irreducible representations

dim1111111111112222224
type+++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D4SD16C4oD4M4(2)C8oD4C4oD8C8.26D4
kernelC8:12SD16C8:C8D4:C8Q8:C8C8:2C8C8xD4C4xSD16C8:4Q8D4:C4Q8:C4C4.Q8C2xSD16C2xC8C8C2xC4D4C4C4C2
# reps1111111122222424442

Matrix representation of C8:12SD16 in GL4(F17) generated by

16000
01600
0080
0009
,
12500
121200
0008
0020
,
1000
01600
0010
00016
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,8,0,0,0,0,9],[12,12,0,0,5,12,0,0,0,0,0,2,0,0,8,0],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;

C8:12SD16 in GAP, Magma, Sage, TeX

C_8\rtimes_{12}{\rm SD}_{16}
% in TeX

G:=Group("C8:12SD16");
// GroupNames label

G:=SmallGroup(128,314);
// by ID

G=gap.SmallGroup(128,314);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,1430,268,1123,570,136,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=a^5,a*c=c*a,c*b*c=b^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<