Copied to
clipboard

G = (C2×SD16)⋊15C4order 128 = 27

11st semidirect product of C2×SD16 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4.84(C4×D4), C4⋊C4.313D4, (C2×C4)⋊15SD16, (C2×SD16)⋊15C4, C4.4(C4⋊D4), Q81(C22⋊C4), (C2×Q8).163D4, C2.11(C4×SD16), C2.7(D4⋊D4), C2.5(Q8⋊D4), C2.2(C4⋊SD16), C23.771(C2×D4), (C22×C4).690D4, C22.154(C4×D4), C22.4Q1641C2, C22.96C22≀C2, C22.58(C4○D8), (C22×C8).38C22, C2.3(Q8.D4), (C22×SD16).7C2, C22.59(C2×SD16), C22.78(C8⋊C22), (C2×C42).280C22, (C22×D4).17C22, C2.11(SD16⋊C4), C22.117(C4⋊D4), (C22×C4).1367C23, C22.7C4228C2, C4.66(C22.D4), C22.67(C8.C22), C24.3C22.5C2, (C22×Q8).388C22, C2.19(C23.23D4), (C2×C4×Q8)⋊1C2, (C2×C8).109(C2×C4), (C2×Q8⋊C4)⋊6C2, (C2×D4).73(C2×C4), (C2×C4).999(C2×D4), C4.14(C2×C22⋊C4), (C2×D4⋊C4).4C2, (C2×Q8).146(C2×C4), (C2×C4).564(C4○D4), (C2×C4⋊C4).768C22, (C2×C4).385(C22×C4), SmallGroup(128,612)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — (C2×SD16)⋊15C4
C1C2C4C2×C4C22×C4C22×Q8C2×C4×Q8 — (C2×SD16)⋊15C4
C1C2C2×C4 — (C2×SD16)⋊15C4
C1C23C2×C42 — (C2×SD16)⋊15C4
C1C2C2C22×C4 — (C2×SD16)⋊15C4

Generators and relations for (C2×SD16)⋊15C4
 G = < a,b,c,d | a2=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd-1=ab-1, dcd-1=ab6c >

Subgroups: 404 in 187 conjugacy classes, 66 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, D4⋊C4, Q8⋊C4, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C22×C8, C2×SD16, C2×SD16, C22×D4, C22×Q8, C22.7C42, C22.4Q16, C24.3C22, C2×D4⋊C4, C2×Q8⋊C4, C2×C4×Q8, C22×SD16, (C2×SD16)⋊15C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, SD16, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, C23.23D4, C4×SD16, SD16⋊C4, Q8⋊D4, D4⋊D4, C4⋊SD16, Q8.D4, (C2×SD16)⋊15C4

Smallest permutation representation of (C2×SD16)⋊15C4
On 64 points
Generators in S64
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 57)(41 52)(42 53)(43 54)(44 55)(45 56)(46 49)(47 50)(48 51)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 19)(2 22)(3 17)(4 20)(5 23)(6 18)(7 21)(8 24)(9 34)(10 37)(11 40)(12 35)(13 38)(14 33)(15 36)(16 39)(25 48)(26 43)(27 46)(28 41)(29 44)(30 47)(31 42)(32 45)(49 60)(50 63)(51 58)(52 61)(53 64)(54 59)(55 62)(56 57)
(1 30 17 54)(2 62 18 42)(3 28 19 52)(4 60 20 48)(5 26 21 50)(6 58 22 46)(7 32 23 56)(8 64 24 44)(9 27 34 51)(10 59 35 47)(11 25 36 49)(12 57 37 45)(13 31 38 55)(14 63 39 43)(15 29 40 53)(16 61 33 41)

G:=sub<Sym(64)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(41,52)(42,53)(43,54)(44,55)(45,56)(46,49)(47,50)(48,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19)(2,22)(3,17)(4,20)(5,23)(6,18)(7,21)(8,24)(9,34)(10,37)(11,40)(12,35)(13,38)(14,33)(15,36)(16,39)(25,48)(26,43)(27,46)(28,41)(29,44)(30,47)(31,42)(32,45)(49,60)(50,63)(51,58)(52,61)(53,64)(54,59)(55,62)(56,57), (1,30,17,54)(2,62,18,42)(3,28,19,52)(4,60,20,48)(5,26,21,50)(6,58,22,46)(7,32,23,56)(8,64,24,44)(9,27,34,51)(10,59,35,47)(11,25,36,49)(12,57,37,45)(13,31,38,55)(14,63,39,43)(15,29,40,53)(16,61,33,41)>;

G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(41,52)(42,53)(43,54)(44,55)(45,56)(46,49)(47,50)(48,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19)(2,22)(3,17)(4,20)(5,23)(6,18)(7,21)(8,24)(9,34)(10,37)(11,40)(12,35)(13,38)(14,33)(15,36)(16,39)(25,48)(26,43)(27,46)(28,41)(29,44)(30,47)(31,42)(32,45)(49,60)(50,63)(51,58)(52,61)(53,64)(54,59)(55,62)(56,57), (1,30,17,54)(2,62,18,42)(3,28,19,52)(4,60,20,48)(5,26,21,50)(6,58,22,46)(7,32,23,56)(8,64,24,44)(9,27,34,51)(10,59,35,47)(11,25,36,49)(12,57,37,45)(13,31,38,55)(14,63,39,43)(15,29,40,53)(16,61,33,41) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,57),(41,52),(42,53),(43,54),(44,55),(45,56),(46,49),(47,50),(48,51)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,19),(2,22),(3,17),(4,20),(5,23),(6,18),(7,21),(8,24),(9,34),(10,37),(11,40),(12,35),(13,38),(14,33),(15,36),(16,39),(25,48),(26,43),(27,46),(28,41),(29,44),(30,47),(31,42),(32,45),(49,60),(50,63),(51,58),(52,61),(53,64),(54,59),(55,62),(56,57)], [(1,30,17,54),(2,62,18,42),(3,28,19,52),(4,60,20,48),(5,26,21,50),(6,58,22,46),(7,32,23,56),(8,64,24,44),(9,27,34,51),(10,59,35,47),(11,25,36,49),(12,57,37,45),(13,31,38,55),(14,63,39,43),(15,29,40,53),(16,61,33,41)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4R4S4T8A···8H
order12···2224···44···4448···8
size11···1882···24···4884···4

38 irreducible representations

dim11111111122222244
type++++++++++++-
imageC1C2C2C2C2C2C2C2C4D4D4D4SD16C4○D4C4○D8C8⋊C22C8.C22
kernel(C2×SD16)⋊15C4C22.7C42C22.4Q16C24.3C22C2×D4⋊C4C2×Q8⋊C4C2×C4×Q8C22×SD16C2×SD16C4⋊C4C22×C4C2×Q8C2×C4C2×C4C22C22C22
# reps11111111822444411

Matrix representation of (C2×SD16)⋊15C4 in GL5(𝔽17)

10000
016000
001600
000160
000016
,
10000
051200
05500
00010
000816
,
10000
00100
01000
00010
000816
,
130000
014300
03300
000815
00069

G:=sub<GL(5,GF(17))| [1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,5,5,0,0,0,12,5,0,0,0,0,0,1,8,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,16],[13,0,0,0,0,0,14,3,0,0,0,3,3,0,0,0,0,0,8,6,0,0,0,15,9] >;

(C2×SD16)⋊15C4 in GAP, Magma, Sage, TeX

(C_2\times {\rm SD}_{16})\rtimes_{15}C_4
% in TeX

G:=Group("(C2xSD16):15C4");
// GroupNames label

G:=SmallGroup(128,612);
// by ID

G=gap.SmallGroup(128,612);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,736,422,352,1018,521,248,1411,718,172,2028,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d^-1=a*b^-1,d*c*d^-1=a*b^6*c>;
// generators/relations

׿
×
𝔽