Extensions 1→N→G→Q→1 with N=C2 and Q=C82D4

Direct product G=N×Q with N=C2 and Q=C82D4
dρLabelID
C2×C82D464C2xC8:2D4128,1784


Non-split extensions G=N.Q with N=C2 and Q=C82D4
extensionφ:Q→Aut NdρLabelID
C2.1(C82D4) = C24.67D4central extension (φ=1)64C2.1(C8:2D4)128,541
C2.2(C82D4) = C24.76D4central extension (φ=1)64C2.2(C8:2D4)128,627
C2.3(C82D4) = C2.(C82D4)central extension (φ=1)64C2.3(C8:2D4)128,668
C2.4(C82D4) = C8⋊(C4⋊C4)central extension (φ=1)128C2.4(C8:2D4)128,676
C2.5(C82D4) = (C2×D8)⋊10C4central extension (φ=1)64C2.5(C8:2D4)128,704
C2.6(C82D4) = C82D8central stem extension (φ=1)64C2.6(C8:2D4)128,419
C2.7(C82D4) = C82SD16central stem extension (φ=1)64C2.7(C8:2D4)128,420
C2.8(C82D4) = C84SD16central stem extension (φ=1)64C2.8(C8:2D4)128,425
C2.9(C82D4) = C82Q16central stem extension (φ=1)128C2.9(C8:2D4)128,426
C2.10(C82D4) = C42.252C23central stem extension (φ=1)64C2.10(C8:2D4)128,433
C2.11(C82D4) = C42.253C23central stem extension (φ=1)64C2.11(C8:2D4)128,434
C2.12(C82D4) = C232D8central stem extension (φ=1)64C2.12(C8:2D4)128,731
C2.13(C82D4) = C24.84D4central stem extension (φ=1)64C2.13(C8:2D4)128,766
C2.14(C82D4) = (C2×C4)⋊3D8central stem extension (φ=1)64C2.14(C8:2D4)128,786
C2.15(C82D4) = C4⋊C4.106D4central stem extension (φ=1)64C2.15(C8:2D4)128,797
C2.16(C82D4) = C24.88D4central stem extension (φ=1)64C2.16(C8:2D4)128,808
C2.17(C82D4) = (C2×C4).21Q16central stem extension (φ=1)128C2.17(C8:2D4)128,819

׿
×
𝔽