p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊2Q16, C42.245C23, C4⋊C4.67D4, (C2×C8).97D4, C8⋊2C8.9C2, (C2×Q8).59D4, C8⋊4Q8.3C2, C4.43(C2×Q16), C2.9(C8⋊2D4), C4⋊C8.32C22, C8⋊2Q8.18C2, C4⋊2Q16.8C2, C4⋊Q8.66C22, C4.72(C8⋊C22), (C4×C8).148C22, C4.10D8.8C2, (C4×Q8).47C22, C2.10(C4⋊2Q16), C2.15(D4.5D4), C4.117(C8.C22), C22.206(C4⋊D4), (C2×C4).30(C4○D4), (C2×C4).1280(C2×D4), SmallGroup(128,426)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊2Q16
G = < a,b,c | a8=b8=1, c2=b4, bab-1=a3, cac-1=a5, cbc-1=b-1 >
Subgroups: 160 in 76 conjugacy classes, 34 normal (22 characteristic)
C1, C2, C4, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4⋊C8, C2.D8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C8⋊2C8, C8⋊4Q8, C4⋊2Q16, C8⋊2Q8, C8⋊2Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C8⋊C22, C8.C22, C4⋊2Q16, C8⋊2D4, D4.5D4, C8⋊2Q16
Character table of C8⋊2Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | √2 | -√2 | -√2 | 0 | 0 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -√2 | -√2 | √2 | 0 | 0 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -√2 | √2 | √2 | 0 | 0 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | √2 | √2 | -√2 | 0 | 0 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | complex lifted from C4○D4 |
ρ19 | 4 | -4 | 4 | -4 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 4 | -4 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ21 | 4 | -4 | -4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 47 80 82 22 16 63 92)(2 42 73 85 23 11 64 95)(3 45 74 88 24 14 57 90)(4 48 75 83 17 9 58 93)(5 43 76 86 18 12 59 96)(6 46 77 81 19 15 60 91)(7 41 78 84 20 10 61 94)(8 44 79 87 21 13 62 89)(25 106 50 127 66 117 101 33)(26 109 51 122 67 120 102 36)(27 112 52 125 68 115 103 39)(28 107 53 128 69 118 104 34)(29 110 54 123 70 113 97 37)(30 105 55 126 71 116 98 40)(31 108 56 121 72 119 99 35)(32 111 49 124 65 114 100 38)
(1 50 22 101)(2 55 23 98)(3 52 24 103)(4 49 17 100)(5 54 18 97)(6 51 19 102)(7 56 20 99)(8 53 21 104)(9 114 48 111)(10 119 41 108)(11 116 42 105)(12 113 43 110)(13 118 44 107)(14 115 45 112)(15 120 46 109)(16 117 47 106)(25 63 66 80)(26 60 67 77)(27 57 68 74)(28 62 69 79)(29 59 70 76)(30 64 71 73)(31 61 72 78)(32 58 65 75)(33 92 127 82)(34 89 128 87)(35 94 121 84)(36 91 122 81)(37 96 123 86)(38 93 124 83)(39 90 125 88)(40 95 126 85)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,47,80,82,22,16,63,92)(2,42,73,85,23,11,64,95)(3,45,74,88,24,14,57,90)(4,48,75,83,17,9,58,93)(5,43,76,86,18,12,59,96)(6,46,77,81,19,15,60,91)(7,41,78,84,20,10,61,94)(8,44,79,87,21,13,62,89)(25,106,50,127,66,117,101,33)(26,109,51,122,67,120,102,36)(27,112,52,125,68,115,103,39)(28,107,53,128,69,118,104,34)(29,110,54,123,70,113,97,37)(30,105,55,126,71,116,98,40)(31,108,56,121,72,119,99,35)(32,111,49,124,65,114,100,38), (1,50,22,101)(2,55,23,98)(3,52,24,103)(4,49,17,100)(5,54,18,97)(6,51,19,102)(7,56,20,99)(8,53,21,104)(9,114,48,111)(10,119,41,108)(11,116,42,105)(12,113,43,110)(13,118,44,107)(14,115,45,112)(15,120,46,109)(16,117,47,106)(25,63,66,80)(26,60,67,77)(27,57,68,74)(28,62,69,79)(29,59,70,76)(30,64,71,73)(31,61,72,78)(32,58,65,75)(33,92,127,82)(34,89,128,87)(35,94,121,84)(36,91,122,81)(37,96,123,86)(38,93,124,83)(39,90,125,88)(40,95,126,85)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,47,80,82,22,16,63,92)(2,42,73,85,23,11,64,95)(3,45,74,88,24,14,57,90)(4,48,75,83,17,9,58,93)(5,43,76,86,18,12,59,96)(6,46,77,81,19,15,60,91)(7,41,78,84,20,10,61,94)(8,44,79,87,21,13,62,89)(25,106,50,127,66,117,101,33)(26,109,51,122,67,120,102,36)(27,112,52,125,68,115,103,39)(28,107,53,128,69,118,104,34)(29,110,54,123,70,113,97,37)(30,105,55,126,71,116,98,40)(31,108,56,121,72,119,99,35)(32,111,49,124,65,114,100,38), (1,50,22,101)(2,55,23,98)(3,52,24,103)(4,49,17,100)(5,54,18,97)(6,51,19,102)(7,56,20,99)(8,53,21,104)(9,114,48,111)(10,119,41,108)(11,116,42,105)(12,113,43,110)(13,118,44,107)(14,115,45,112)(15,120,46,109)(16,117,47,106)(25,63,66,80)(26,60,67,77)(27,57,68,74)(28,62,69,79)(29,59,70,76)(30,64,71,73)(31,61,72,78)(32,58,65,75)(33,92,127,82)(34,89,128,87)(35,94,121,84)(36,91,122,81)(37,96,123,86)(38,93,124,83)(39,90,125,88)(40,95,126,85) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,47,80,82,22,16,63,92),(2,42,73,85,23,11,64,95),(3,45,74,88,24,14,57,90),(4,48,75,83,17,9,58,93),(5,43,76,86,18,12,59,96),(6,46,77,81,19,15,60,91),(7,41,78,84,20,10,61,94),(8,44,79,87,21,13,62,89),(25,106,50,127,66,117,101,33),(26,109,51,122,67,120,102,36),(27,112,52,125,68,115,103,39),(28,107,53,128,69,118,104,34),(29,110,54,123,70,113,97,37),(30,105,55,126,71,116,98,40),(31,108,56,121,72,119,99,35),(32,111,49,124,65,114,100,38)], [(1,50,22,101),(2,55,23,98),(3,52,24,103),(4,49,17,100),(5,54,18,97),(6,51,19,102),(7,56,20,99),(8,53,21,104),(9,114,48,111),(10,119,41,108),(11,116,42,105),(12,113,43,110),(13,118,44,107),(14,115,45,112),(15,120,46,109),(16,117,47,106),(25,63,66,80),(26,60,67,77),(27,57,68,74),(28,62,69,79),(29,59,70,76),(30,64,71,73),(31,61,72,78),(32,58,65,75),(33,92,127,82),(34,89,128,87),(35,94,121,84),(36,91,122,81),(37,96,123,86),(38,93,124,83),(39,90,125,88),(40,95,126,85)]])
Matrix representation of C8⋊2Q16 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 13 | 12 | 14 |
0 | 0 | 4 | 7 | 3 | 12 |
0 | 0 | 5 | 3 | 10 | 4 |
0 | 0 | 14 | 5 | 13 | 10 |
0 | 6 | 0 | 0 | 0 | 0 |
14 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 4 |
0 | 0 | 0 | 11 | 4 | 0 |
0 | 0 | 0 | 4 | 6 | 0 |
0 | 0 | 4 | 0 | 0 | 11 |
11 | 3 | 0 | 0 | 0 | 0 |
16 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,4,5,14,0,0,13,7,3,5,0,0,12,3,10,13,0,0,14,12,4,10],[0,14,0,0,0,0,6,11,0,0,0,0,0,0,6,0,0,4,0,0,0,11,4,0,0,0,0,4,6,0,0,0,4,0,0,11],[11,16,0,0,0,0,3,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C8⋊2Q16 in GAP, Magma, Sage, TeX
C_8\rtimes_2Q_{16}
% in TeX
G:=Group("C8:2Q16");
// GroupNames label
G:=SmallGroup(128,426);
// by ID
G=gap.SmallGroup(128,426);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,288,422,387,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,b*a*b^-1=a^3,c*a*c^-1=a^5,c*b*c^-1=b^-1>;
// generators/relations
Export