p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×D8)⋊10C4, C4.21(C4×D4), C8⋊2(C22⋊C4), (C2×C8).207D4, C2.4(C8⋊3D4), C2.5(C8⋊2D4), C4.85(C4⋊D4), C4.5(C4.4D4), (C22×D8).11C2, C23.805(C2×D4), C22.185(C4×D4), (C22×C4).135D4, C2.12(D8⋊C4), C22.41(C4⋊1D4), C22.96(C8⋊C22), C24.3C22⋊5C2, (C22×C8).407C22, (C2×C42).323C22, (C22×D4).50C22, C22.147(C4⋊D4), (C22×C4).1412C23, C2.24(C24.3C22), (C2×C4.Q8)⋊3C2, (C2×C8⋊C4)⋊1C2, (C2×C8).72(C2×C4), C4.40(C2×C22⋊C4), (C2×D4⋊C4)⋊47C2, (C2×D4).111(C2×C4), (C2×C4).1357(C2×D4), (C2×C4⋊C4).93C22, (C2×C4).603(C4○D4), (C2×C4).426(C22×C4), SmallGroup(128,704)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×D8)⋊10C4
G = < a,b,c,d | a2=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=ab2c >
Subgroups: 484 in 188 conjugacy classes, 64 normal (24 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C8⋊C4, D4⋊C4, C4.Q8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×C8, C2×D8, C2×D8, C22×D4, C24.3C22, C2×C8⋊C4, C2×D4⋊C4, C2×C4.Q8, C22×D8, (C2×D8)⋊10C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C8⋊C22, C24.3C22, D8⋊C4, C8⋊2D4, C8⋊3D4, (C2×D8)⋊10C4
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 47)(10 48)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(25 63)(26 64)(27 57)(28 58)(29 59)(30 60)(31 61)(32 62)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 20)(2 19)(3 18)(4 17)(5 24)(6 23)(7 22)(8 21)(9 48)(10 47)(11 46)(12 45)(13 44)(14 43)(15 42)(16 41)(25 30)(26 29)(27 28)(31 32)(33 36)(34 35)(37 40)(38 39)(49 52)(50 51)(53 56)(54 55)(57 58)(59 64)(60 63)(61 62)
(1 35 48 58)(2 38 41 61)(3 33 42 64)(4 36 43 59)(5 39 44 62)(6 34 45 57)(7 37 46 60)(8 40 47 63)(9 25 20 56)(10 28 21 51)(11 31 22 54)(12 26 23 49)(13 29 24 52)(14 32 17 55)(15 27 18 50)(16 30 19 53)
G:=sub<Sym(64)| (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(25,63)(26,64)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,20)(2,19)(3,18)(4,17)(5,24)(6,23)(7,22)(8,21)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(25,30)(26,29)(27,28)(31,32)(33,36)(34,35)(37,40)(38,39)(49,52)(50,51)(53,56)(54,55)(57,58)(59,64)(60,63)(61,62), (1,35,48,58)(2,38,41,61)(3,33,42,64)(4,36,43,59)(5,39,44,62)(6,34,45,57)(7,37,46,60)(8,40,47,63)(9,25,20,56)(10,28,21,51)(11,31,22,54)(12,26,23,49)(13,29,24,52)(14,32,17,55)(15,27,18,50)(16,30,19,53)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(25,63)(26,64)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,20)(2,19)(3,18)(4,17)(5,24)(6,23)(7,22)(8,21)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(25,30)(26,29)(27,28)(31,32)(33,36)(34,35)(37,40)(38,39)(49,52)(50,51)(53,56)(54,55)(57,58)(59,64)(60,63)(61,62), (1,35,48,58)(2,38,41,61)(3,33,42,64)(4,36,43,59)(5,39,44,62)(6,34,45,57)(7,37,46,60)(8,40,47,63)(9,25,20,56)(10,28,21,51)(11,31,22,54)(12,26,23,49)(13,29,24,52)(14,32,17,55)(15,27,18,50)(16,30,19,53) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,47),(10,48),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(25,63),(26,64),(27,57),(28,58),(29,59),(30,60),(31,61),(32,62),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,20),(2,19),(3,18),(4,17),(5,24),(6,23),(7,22),(8,21),(9,48),(10,47),(11,46),(12,45),(13,44),(14,43),(15,42),(16,41),(25,30),(26,29),(27,28),(31,32),(33,36),(34,35),(37,40),(38,39),(49,52),(50,51),(53,56),(54,55),(57,58),(59,64),(60,63),(61,62)], [(1,35,48,58),(2,38,41,61),(3,33,42,64),(4,36,43,59),(5,39,44,62),(6,34,45,57),(7,37,46,60),(8,40,47,63),(9,25,20,56),(10,28,21,51),(11,31,22,54),(12,26,23,49),(13,29,24,52),(14,32,17,55),(15,27,18,50),(16,30,19,53)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C4○D4 | C8⋊C22 |
kernel | (C2×D8)⋊10C4 | C24.3C22 | C2×C8⋊C4 | C2×D4⋊C4 | C2×C4.Q8 | C22×D8 | C2×D8 | C2×C8 | C22×C4 | C2×C4 | C22 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 8 | 6 | 2 | 4 | 4 |
Matrix representation of (C2×D8)⋊10C4 ►in GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 1 | 0 | 16 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 15 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 16 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 8 | 9 | 9 |
0 | 0 | 0 | 0 | 13 | 4 | 0 | 9 |
0 | 0 | 0 | 0 | 12 | 9 | 8 | 4 |
0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,16,16,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,2,1,16,16],[0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,16,1,1],[0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,5,13,12,4,0,0,0,0,8,4,9,0,0,0,0,0,9,0,8,4,0,0,0,0,9,9,4,0] >;
(C2×D8)⋊10C4 in GAP, Magma, Sage, TeX
(C_2\times D_8)\rtimes_{10}C_4
% in TeX
G:=Group("(C2xD8):10C4");
// GroupNames label
G:=SmallGroup(128,704);
// by ID
G=gap.SmallGroup(128,704);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,736,422,723,100,2019,248,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=a*b^2*c>;
// generators/relations