p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊4SD16, C42.244C23, C4⋊C4.66D4, C8⋊2C8⋊17C2, (C2×C8).96D4, C8⋊2Q8⋊23C2, (C2×D4).61D4, C8⋊6D4.3C2, C2.8(C8⋊2D4), C4.61(C2×SD16), C4⋊Q8.65C22, C4.10D8⋊29C2, C4⋊C8.187C22, C4.71(C8⋊C22), (C4×C8).147C22, (C4×D4).47C22, D4.D4.10C2, C2.10(D4.D4), C2.14(D4.5D4), C4.116(C8.C22), C22.205(C4⋊D4), (C2×C4).29(C4○D4), (C2×C4).1279(C2×D4), SmallGroup(128,425)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊4SD16
G = < a,b,c | a8=b8=c2=1, bab-1=a3, cac=a5, cbc=b3 >
Subgroups: 192 in 83 conjugacy classes, 34 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×Q8, C4×C8, C22⋊C8, Q8⋊C4, C4⋊C8, C4⋊C8, C2.D8, C4×D4, C4⋊Q8, C2×M4(2), C2×SD16, C4.10D8, C8⋊2C8, C8⋊6D4, D4.D4, C8⋊2Q8, C8⋊4SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C8⋊C22, C8.C22, D4.D4, C8⋊2D4, D4.5D4, C8⋊4SD16
Character table of C8⋊4SD16
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 8 | 2 | 2 | 2 | 2 | 4 | 8 | 16 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | complex lifted from C4○D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -√-2 | -√-2 | √-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | √-2 | √-2 | -√-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -√-2 | √-2 | √-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | √-2 | -√-2 | -√-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ19 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 4 | -4 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ21 | 4 | -4 | -4 | 4 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 31 47 58 49 16 34 19)(2 26 48 61 50 11 35 22)(3 29 41 64 51 14 36 17)(4 32 42 59 52 9 37 20)(5 27 43 62 53 12 38 23)(6 30 44 57 54 15 39 18)(7 25 45 60 55 10 40 21)(8 28 46 63 56 13 33 24)
(2 6)(4 8)(9 24)(10 21)(11 18)(12 23)(13 20)(14 17)(15 22)(16 19)(25 60)(26 57)(27 62)(28 59)(29 64)(30 61)(31 58)(32 63)(33 42)(34 47)(35 44)(36 41)(37 46)(38 43)(39 48)(40 45)(50 54)(52 56)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,31,47,58,49,16,34,19)(2,26,48,61,50,11,35,22)(3,29,41,64,51,14,36,17)(4,32,42,59,52,9,37,20)(5,27,43,62,53,12,38,23)(6,30,44,57,54,15,39,18)(7,25,45,60,55,10,40,21)(8,28,46,63,56,13,33,24), (2,6)(4,8)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19)(25,60)(26,57)(27,62)(28,59)(29,64)(30,61)(31,58)(32,63)(33,42)(34,47)(35,44)(36,41)(37,46)(38,43)(39,48)(40,45)(50,54)(52,56)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,31,47,58,49,16,34,19)(2,26,48,61,50,11,35,22)(3,29,41,64,51,14,36,17)(4,32,42,59,52,9,37,20)(5,27,43,62,53,12,38,23)(6,30,44,57,54,15,39,18)(7,25,45,60,55,10,40,21)(8,28,46,63,56,13,33,24), (2,6)(4,8)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19)(25,60)(26,57)(27,62)(28,59)(29,64)(30,61)(31,58)(32,63)(33,42)(34,47)(35,44)(36,41)(37,46)(38,43)(39,48)(40,45)(50,54)(52,56) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,31,47,58,49,16,34,19),(2,26,48,61,50,11,35,22),(3,29,41,64,51,14,36,17),(4,32,42,59,52,9,37,20),(5,27,43,62,53,12,38,23),(6,30,44,57,54,15,39,18),(7,25,45,60,55,10,40,21),(8,28,46,63,56,13,33,24)], [(2,6),(4,8),(9,24),(10,21),(11,18),(12,23),(13,20),(14,17),(15,22),(16,19),(25,60),(26,57),(27,62),(28,59),(29,64),(30,61),(31,58),(32,63),(33,42),(34,47),(35,44),(36,41),(37,46),(38,43),(39,48),(40,45),(50,54),(52,56)]])
Matrix representation of C8⋊4SD16 ►in GL8(𝔽17)
1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 |
16 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 13 | 11 | 9 |
0 | 0 | 0 | 0 | 11 | 3 | 5 | 6 |
4 | 13 | 4 | 13 | 0 | 0 | 0 | 0 |
4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 |
15 | 2 | 13 | 4 | 0 | 0 | 0 | 0 |
15 | 15 | 13 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 15 | 8 | 8 | 16 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 12 | 11 | 9 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 16 |
G:=sub<GL(8,GF(17))| [1,0,16,0,0,0,0,0,0,1,0,16,0,0,0,0,2,0,16,0,0,0,0,0,0,2,0,16,0,0,0,0,0,0,0,0,8,4,1,11,0,0,0,0,2,9,13,3,0,0,0,0,0,0,11,5,0,0,0,0,0,0,9,6],[4,4,15,15,0,0,0,0,13,4,2,15,0,0,0,0,4,4,13,13,0,0,0,0,13,4,4,13,0,0,0,0,0,0,0,0,0,15,1,9,0,0,0,0,0,8,0,12,0,0,0,0,1,8,0,11,0,0,0,0,0,16,0,9],[1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,7,0,0,0,0,0,0,0,16] >;
C8⋊4SD16 in GAP, Magma, Sage, TeX
C_8\rtimes_4{\rm SD}_{16}
% in TeX
G:=Group("C8:4SD16");
// GroupNames label
G:=SmallGroup(128,425);
// by ID
G=gap.SmallGroup(128,425);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,288,422,387,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=a^3,c*a*c=a^5,c*b*c=b^3>;
// generators/relations
Export