Extensions 1→N→G→Q→1 with N=C2 and Q=C8.D4

Direct product G=N×Q with N=C2 and Q=C8.D4
dρLabelID
C2×C8.D464C2xC8.D4128,1785


Non-split extensions G=N.Q with N=C2 and Q=C8.D4
extensionφ:Q→Aut NdρLabelID
C2.1(C8.D4) = C24.67D4central extension (φ=1)64C2.1(C8.D4)128,541
C2.2(C8.D4) = C24.75D4central extension (φ=1)64C2.2(C8.D4)128,626
C2.3(C8.D4) = C2.(C8⋊D4)central extension (φ=1)128C2.3(C8.D4)128,667
C2.4(C8.D4) = C8⋊(C4⋊C4)central extension (φ=1)128C2.4(C8.D4)128,676
C2.5(C8.D4) = (C2×Q16)⋊10C4central extension (φ=1)128C2.5(C8.D4)128,703
C2.6(C8.D4) = C8.D8central stem extension (φ=1)64C2.6(C8.D4)128,421
C2.7(C8.D4) = C8.SD16central stem extension (φ=1)128C2.7(C8.D4)128,422
C2.8(C8.D4) = C8.8SD16central stem extension (φ=1)64C2.8(C8.D4)128,427
C2.9(C8.D4) = C8.3Q16central stem extension (φ=1)128C2.9(C8.D4)128,428
C2.10(C8.D4) = C42.254C23central stem extension (φ=1)64C2.10(C8.D4)128,435
C2.11(C8.D4) = C42.255C23central stem extension (φ=1)128C2.11(C8.D4)128,436
C2.12(C8.D4) = C232Q16central stem extension (φ=1)64C2.12(C8.D4)128,733
C2.13(C8.D4) = C24.85D4central stem extension (φ=1)64C2.13(C8.D4)128,767
C2.14(C8.D4) = (C2×C4)⋊3Q16central stem extension (φ=1)128C2.14(C8.D4)128,788
C2.15(C8.D4) = (C2×Q8).8Q8central stem extension (φ=1)128C2.15(C8.D4)128,798
C2.16(C8.D4) = C23.12D8central stem extension (φ=1)64C2.16(C8.D4)128,807
C2.17(C8.D4) = (C2×C4).26D8central stem extension (φ=1)128C2.17(C8.D4)128,818

׿
×
𝔽