Copied to
clipboard

G = (C2×Q8).8Q8order 128 = 27

8th non-split extension by C2×Q8 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×Q8).8Q8, C4⋊C4.107D4, (C2×C8).163D4, (C2×C4).38SD16, C2.21(C88D4), C2.8(Q8⋊Q8), C23.923(C2×D4), (C22×C4).155D4, C2.10(Q8.Q8), C4.36(C22⋊Q8), C4.154(C4⋊D4), C2.15(C8.D4), (C22×C8).81C22, C4.34(C422C2), C2.15(D4.D4), C22.117(C4○D8), C22.4Q16.23C2, (C2×C42).377C22, C2.20(Q8.D4), C22.102(C2×SD16), C2.7(C23.Q8), (C22×Q8).75C22, C22.244(C4⋊D4), (C22×C4).1457C23, C22.110(C22⋊Q8), C22.134(C8.C22), C23.65C23.18C2, C23.67C23.17C2, (C2×C4⋊C8).48C2, (C2×C4).284(C2×Q8), (C2×C4.Q8).24C2, (C2×C4).1056(C2×D4), (C2×C4).621(C4○D4), (C2×C4⋊C4).142C22, (C2×Q8⋊C4).14C2, SmallGroup(128,798)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — (C2×Q8).8Q8
C1C2C4C2×C4C22×C4C22×Q8C2×Q8⋊C4 — (C2×Q8).8Q8
C1C2C22×C4 — (C2×Q8).8Q8
C1C23C2×C42 — (C2×Q8).8Q8
C1C2C2C22×C4 — (C2×Q8).8Q8

Generators and relations for (C2×Q8).8Q8
 G = < a,b,c,d,e | a2=b4=1, c2=d4=b2, e2=b2cd2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, dbd-1=abc, ebe-1=b-1c, cd=dc, ece-1=b2c, ede-1=d3 >

Subgroups: 248 in 124 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, Q8⋊C4, C4⋊C8, C4.Q8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22×Q8, C22.4Q16, C23.65C23, C23.67C23, C2×Q8⋊C4, C2×C4⋊C8, C2×C4.Q8, (C2×Q8).8Q8
Quotients: C1, C2, C22, D4, Q8, C23, SD16, C2×D4, C2×Q8, C4○D4, C4⋊D4, C22⋊Q8, C422C2, C2×SD16, C4○D8, C8.C22, C23.Q8, D4.D4, Q8.D4, C88D4, C8.D4, Q8⋊Q8, Q8.Q8, (C2×Q8).8Q8

Smallest permutation representation of (C2×Q8).8Q8
Regular action on 128 points
Generators in S128
(1 75)(2 76)(3 77)(4 78)(5 79)(6 80)(7 73)(8 74)(9 115)(10 116)(11 117)(12 118)(13 119)(14 120)(15 113)(16 114)(17 28)(18 29)(19 30)(20 31)(21 32)(22 25)(23 26)(24 27)(33 125)(34 126)(35 127)(36 128)(37 121)(38 122)(39 123)(40 124)(41 105)(42 106)(43 107)(44 108)(45 109)(46 110)(47 111)(48 112)(49 64)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)(65 102)(66 103)(67 104)(68 97)(69 98)(70 99)(71 100)(72 101)(81 96)(82 89)(83 90)(84 91)(85 92)(86 93)(87 94)(88 95)
(1 71 5 67)(2 26 6 30)(3 69 7 65)(4 32 8 28)(9 39 13 35)(10 92 14 96)(11 37 15 33)(12 90 16 94)(17 78 21 74)(18 57 22 61)(19 76 23 80)(20 63 24 59)(25 54 29 50)(27 52 31 56)(34 46 38 42)(36 44 40 48)(41 89 45 93)(43 95 47 91)(49 70 53 66)(51 68 55 72)(58 97 62 101)(60 103 64 99)(73 102 77 98)(75 100 79 104)(81 116 85 120)(82 109 86 105)(83 114 87 118)(84 107 88 111)(106 126 110 122)(108 124 112 128)(113 125 117 121)(115 123 119 127)
(1 61 5 57)(2 62 6 58)(3 63 7 59)(4 64 8 60)(9 107 13 111)(10 108 14 112)(11 109 15 105)(12 110 16 106)(17 70 21 66)(18 71 22 67)(19 72 23 68)(20 65 24 69)(25 104 29 100)(26 97 30 101)(27 98 31 102)(28 99 32 103)(33 86 37 82)(34 87 38 83)(35 88 39 84)(36 81 40 85)(41 117 45 113)(42 118 46 114)(43 119 47 115)(44 120 48 116)(49 74 53 78)(50 75 54 79)(51 76 55 80)(52 77 56 73)(89 125 93 121)(90 126 94 122)(91 127 95 123)(92 128 96 124)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 93 59 127)(2 96 60 122)(3 91 61 125)(4 94 62 128)(5 89 63 123)(6 92 64 126)(7 95 57 121)(8 90 58 124)(9 29 105 98)(10 32 106 101)(11 27 107 104)(12 30 108 99)(13 25 109 102)(14 28 110 97)(15 31 111 100)(16 26 112 103)(17 46 68 120)(18 41 69 115)(19 44 70 118)(20 47 71 113)(21 42 72 116)(22 45 65 119)(23 48 66 114)(24 43 67 117)(33 77 84 54)(34 80 85 49)(35 75 86 52)(36 78 87 55)(37 73 88 50)(38 76 81 53)(39 79 82 56)(40 74 83 51)

G:=sub<Sym(128)| (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,73)(8,74)(9,115)(10,116)(11,117)(12,118)(13,119)(14,120)(15,113)(16,114)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27)(33,125)(34,126)(35,127)(36,128)(37,121)(38,122)(39,123)(40,124)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(65,102)(66,103)(67,104)(68,97)(69,98)(70,99)(71,100)(72,101)(81,96)(82,89)(83,90)(84,91)(85,92)(86,93)(87,94)(88,95), (1,71,5,67)(2,26,6,30)(3,69,7,65)(4,32,8,28)(9,39,13,35)(10,92,14,96)(11,37,15,33)(12,90,16,94)(17,78,21,74)(18,57,22,61)(19,76,23,80)(20,63,24,59)(25,54,29,50)(27,52,31,56)(34,46,38,42)(36,44,40,48)(41,89,45,93)(43,95,47,91)(49,70,53,66)(51,68,55,72)(58,97,62,101)(60,103,64,99)(73,102,77,98)(75,100,79,104)(81,116,85,120)(82,109,86,105)(83,114,87,118)(84,107,88,111)(106,126,110,122)(108,124,112,128)(113,125,117,121)(115,123,119,127), (1,61,5,57)(2,62,6,58)(3,63,7,59)(4,64,8,60)(9,107,13,111)(10,108,14,112)(11,109,15,105)(12,110,16,106)(17,70,21,66)(18,71,22,67)(19,72,23,68)(20,65,24,69)(25,104,29,100)(26,97,30,101)(27,98,31,102)(28,99,32,103)(33,86,37,82)(34,87,38,83)(35,88,39,84)(36,81,40,85)(41,117,45,113)(42,118,46,114)(43,119,47,115)(44,120,48,116)(49,74,53,78)(50,75,54,79)(51,76,55,80)(52,77,56,73)(89,125,93,121)(90,126,94,122)(91,127,95,123)(92,128,96,124), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,93,59,127)(2,96,60,122)(3,91,61,125)(4,94,62,128)(5,89,63,123)(6,92,64,126)(7,95,57,121)(8,90,58,124)(9,29,105,98)(10,32,106,101)(11,27,107,104)(12,30,108,99)(13,25,109,102)(14,28,110,97)(15,31,111,100)(16,26,112,103)(17,46,68,120)(18,41,69,115)(19,44,70,118)(20,47,71,113)(21,42,72,116)(22,45,65,119)(23,48,66,114)(24,43,67,117)(33,77,84,54)(34,80,85,49)(35,75,86,52)(36,78,87,55)(37,73,88,50)(38,76,81,53)(39,79,82,56)(40,74,83,51)>;

G:=Group( (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,73)(8,74)(9,115)(10,116)(11,117)(12,118)(13,119)(14,120)(15,113)(16,114)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27)(33,125)(34,126)(35,127)(36,128)(37,121)(38,122)(39,123)(40,124)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(65,102)(66,103)(67,104)(68,97)(69,98)(70,99)(71,100)(72,101)(81,96)(82,89)(83,90)(84,91)(85,92)(86,93)(87,94)(88,95), (1,71,5,67)(2,26,6,30)(3,69,7,65)(4,32,8,28)(9,39,13,35)(10,92,14,96)(11,37,15,33)(12,90,16,94)(17,78,21,74)(18,57,22,61)(19,76,23,80)(20,63,24,59)(25,54,29,50)(27,52,31,56)(34,46,38,42)(36,44,40,48)(41,89,45,93)(43,95,47,91)(49,70,53,66)(51,68,55,72)(58,97,62,101)(60,103,64,99)(73,102,77,98)(75,100,79,104)(81,116,85,120)(82,109,86,105)(83,114,87,118)(84,107,88,111)(106,126,110,122)(108,124,112,128)(113,125,117,121)(115,123,119,127), (1,61,5,57)(2,62,6,58)(3,63,7,59)(4,64,8,60)(9,107,13,111)(10,108,14,112)(11,109,15,105)(12,110,16,106)(17,70,21,66)(18,71,22,67)(19,72,23,68)(20,65,24,69)(25,104,29,100)(26,97,30,101)(27,98,31,102)(28,99,32,103)(33,86,37,82)(34,87,38,83)(35,88,39,84)(36,81,40,85)(41,117,45,113)(42,118,46,114)(43,119,47,115)(44,120,48,116)(49,74,53,78)(50,75,54,79)(51,76,55,80)(52,77,56,73)(89,125,93,121)(90,126,94,122)(91,127,95,123)(92,128,96,124), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,93,59,127)(2,96,60,122)(3,91,61,125)(4,94,62,128)(5,89,63,123)(6,92,64,126)(7,95,57,121)(8,90,58,124)(9,29,105,98)(10,32,106,101)(11,27,107,104)(12,30,108,99)(13,25,109,102)(14,28,110,97)(15,31,111,100)(16,26,112,103)(17,46,68,120)(18,41,69,115)(19,44,70,118)(20,47,71,113)(21,42,72,116)(22,45,65,119)(23,48,66,114)(24,43,67,117)(33,77,84,54)(34,80,85,49)(35,75,86,52)(36,78,87,55)(37,73,88,50)(38,76,81,53)(39,79,82,56)(40,74,83,51) );

G=PermutationGroup([[(1,75),(2,76),(3,77),(4,78),(5,79),(6,80),(7,73),(8,74),(9,115),(10,116),(11,117),(12,118),(13,119),(14,120),(15,113),(16,114),(17,28),(18,29),(19,30),(20,31),(21,32),(22,25),(23,26),(24,27),(33,125),(34,126),(35,127),(36,128),(37,121),(38,122),(39,123),(40,124),(41,105),(42,106),(43,107),(44,108),(45,109),(46,110),(47,111),(48,112),(49,64),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63),(65,102),(66,103),(67,104),(68,97),(69,98),(70,99),(71,100),(72,101),(81,96),(82,89),(83,90),(84,91),(85,92),(86,93),(87,94),(88,95)], [(1,71,5,67),(2,26,6,30),(3,69,7,65),(4,32,8,28),(9,39,13,35),(10,92,14,96),(11,37,15,33),(12,90,16,94),(17,78,21,74),(18,57,22,61),(19,76,23,80),(20,63,24,59),(25,54,29,50),(27,52,31,56),(34,46,38,42),(36,44,40,48),(41,89,45,93),(43,95,47,91),(49,70,53,66),(51,68,55,72),(58,97,62,101),(60,103,64,99),(73,102,77,98),(75,100,79,104),(81,116,85,120),(82,109,86,105),(83,114,87,118),(84,107,88,111),(106,126,110,122),(108,124,112,128),(113,125,117,121),(115,123,119,127)], [(1,61,5,57),(2,62,6,58),(3,63,7,59),(4,64,8,60),(9,107,13,111),(10,108,14,112),(11,109,15,105),(12,110,16,106),(17,70,21,66),(18,71,22,67),(19,72,23,68),(20,65,24,69),(25,104,29,100),(26,97,30,101),(27,98,31,102),(28,99,32,103),(33,86,37,82),(34,87,38,83),(35,88,39,84),(36,81,40,85),(41,117,45,113),(42,118,46,114),(43,119,47,115),(44,120,48,116),(49,74,53,78),(50,75,54,79),(51,76,55,80),(52,77,56,73),(89,125,93,121),(90,126,94,122),(91,127,95,123),(92,128,96,124)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,93,59,127),(2,96,60,122),(3,91,61,125),(4,94,62,128),(5,89,63,123),(6,92,64,126),(7,95,57,121),(8,90,58,124),(9,29,105,98),(10,32,106,101),(11,27,107,104),(12,30,108,99),(13,25,109,102),(14,28,110,97),(15,31,111,100),(16,26,112,103),(17,46,68,120),(18,41,69,115),(19,44,70,118),(20,47,71,113),(21,42,72,116),(22,45,65,119),(23,48,66,114),(24,43,67,117),(33,77,84,54),(34,80,85,49),(35,75,86,52),(36,78,87,55),(37,73,88,50),(38,76,81,53),(39,79,82,56),(40,74,83,51)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim111111122222224
type++++++++++--
imageC1C2C2C2C2C2C2D4D4D4Q8SD16C4○D4C4○D8C8.C22
kernel(C2×Q8).8Q8C22.4Q16C23.65C23C23.67C23C2×Q8⋊C4C2×C4⋊C8C2×C4.Q8C4⋊C4C2×C8C22×C4C2×Q8C2×C4C2×C4C22C22
# reps111121122224642

Matrix representation of (C2×Q8).8Q8 in GL6(𝔽17)

1600000
0160000
001000
000100
000010
000001
,
0160000
1600000
0016000
0001600
000004
000040
,
1600000
0160000
001000
000100
0000016
000010
,
1600000
0160000
00161500
001100
000055
0000125
,
1040000
1370000
008200
0010900
00001414
0000143

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,1,0,0,0,0,15,1,0,0,0,0,0,0,5,12,0,0,0,0,5,5],[10,13,0,0,0,0,4,7,0,0,0,0,0,0,8,10,0,0,0,0,2,9,0,0,0,0,0,0,14,14,0,0,0,0,14,3] >;

(C2×Q8).8Q8 in GAP, Magma, Sage, TeX

(C_2\times Q_8)._8Q_8
% in TeX

G:=Group("(C2xQ8).8Q8");
// GroupNames label

G:=SmallGroup(128,798);
// by ID

G=gap.SmallGroup(128,798);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,168,141,64,422,387,352,2019,521,248,2804,718,172,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=1,c^2=d^4=b^2,e^2=b^2*c*d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,d*b*d^-1=a*b*c,e*b*e^-1=b^-1*c,c*d=d*c,e*c*e^-1=b^2*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽