Copied to
clipboard

G = C8.3Q16order 128 = 27

3rd non-split extension by C8 of Q16 acting via Q16/C4=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C8.3Q16, C42.247C23, C4⋊C4.69D4, (C2×C8).99D4, (C2×Q8).60D4, C4.44(C2×Q16), C84Q8.4C2, C82C8.10C2, C4⋊C8.33C22, C4.Q16.7C2, C82Q8.19C2, C4⋊Q8.68C22, (C4×C8).150C22, C2.9(C8.D4), C4.6Q16.6C2, (C4×Q8).48C22, C2.11(C42Q16), C4.45(C8.C22), C2.15(D4.4D4), C22.208(C4⋊D4), (C2×C4).32(C4○D4), (C2×C4).1282(C2×D4), SmallGroup(128,428)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C8.3Q16
C1C2C22C2×C4C42C4×Q8C84Q8 — C8.3Q16
C1C22C42 — C8.3Q16
C1C22C42 — C8.3Q16
C1C22C22C42 — C8.3Q16

Generators and relations for C8.3Q16
 G = < a,b,c | a8=b8=1, c2=b4, bab-1=a3, cac-1=a5, cbc-1=a4b-1 >

Subgroups: 144 in 70 conjugacy classes, 34 normal (22 characteristic)
C1, C2, C4, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×Q8, C2×Q8, C4×C8, C8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4⋊C8, C2.D8, C4×Q8, C4⋊Q8, C4.6Q16, C82C8, C84Q8, C4.Q16, C82Q8, C8.3Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C8.C22, C42Q16, C8.D4, D4.4D4, C8.3Q16

Character table of C8.3Q16

 class 12A2B2C4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F8G8H8I8J
 size 1111222248816164444888888
ρ111111111111111111111111    trivial
ρ211111111111-11-1-1-1-11-11-1-1-1    linear of order 2
ρ3111111111-1-1-11-1-1-1-1-11-1111    linear of order 2
ρ4111111111-1-1111111-1-1-1-1-1-1    linear of order 2
ρ511111111111-1-11111-1-1-111-1    linear of order 2
ρ6111111111111-1-1-1-1-1-11-1-1-11    linear of order 2
ρ7111111111-1-11-1-1-1-1-11-1111-1    linear of order 2
ρ8111111111-1-1-1-11111111-1-11    linear of order 2
ρ92222-22-22-22-2000000000000    orthogonal lifted from D4
ρ102222-22-22-2-22000000000000    orthogonal lifted from D4
ρ1122222-22-2-200002-2-22000000    orthogonal lifted from D4
ρ1222222-22-2-20000-222-2000000    orthogonal lifted from D4
ρ132-2-22-20200000002-202-2-2002    symplectic lifted from Q16, Schur index 2
ρ142-2-22-2020000000-220-2-22002    symplectic lifted from Q16, Schur index 2
ρ152-2-22-20200000002-20-22200-2    symplectic lifted from Q16, Schur index 2
ρ162-2-22-2020000000-22022-200-2    symplectic lifted from Q16, Schur index 2
ρ172222-2-2-2-22000000000002i-2i0    complex lifted from C4○D4
ρ182222-2-2-2-2200000000000-2i2i0    complex lifted from C4○D4
ρ1944-4-4000000000-220022000000    orthogonal lifted from D4.4D4
ρ2044-4-40000000002200-22000000    orthogonal lifted from D4.4D4
ρ214-44-40-404000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ224-44-4040-4000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ234-4-4440-40000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of C8.3Q16
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 43 76 120 53 81 19 16)(2 46 77 115 54 84 20 11)(3 41 78 118 55 87 21 14)(4 44 79 113 56 82 22 9)(5 47 80 116 49 85 23 12)(6 42 73 119 50 88 24 15)(7 45 74 114 51 83 17 10)(8 48 75 117 52 86 18 13)(25 123 63 91 66 108 101 33)(26 126 64 94 67 111 102 36)(27 121 57 89 68 106 103 39)(28 124 58 92 69 109 104 34)(29 127 59 95 70 112 97 37)(30 122 60 90 71 107 98 40)(31 125 61 93 72 110 99 35)(32 128 62 96 65 105 100 38)
(1 59 53 97)(2 64 54 102)(3 61 55 99)(4 58 56 104)(5 63 49 101)(6 60 50 98)(7 57 51 103)(8 62 52 100)(9 96 113 38)(10 93 114 35)(11 90 115 40)(12 95 116 37)(13 92 117 34)(14 89 118 39)(15 94 119 36)(16 91 120 33)(17 68 74 27)(18 65 75 32)(19 70 76 29)(20 67 77 26)(21 72 78 31)(22 69 79 28)(23 66 80 25)(24 71 73 30)(41 121 87 106)(42 126 88 111)(43 123 81 108)(44 128 82 105)(45 125 83 110)(46 122 84 107)(47 127 85 112)(48 124 86 109)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,43,76,120,53,81,19,16)(2,46,77,115,54,84,20,11)(3,41,78,118,55,87,21,14)(4,44,79,113,56,82,22,9)(5,47,80,116,49,85,23,12)(6,42,73,119,50,88,24,15)(7,45,74,114,51,83,17,10)(8,48,75,117,52,86,18,13)(25,123,63,91,66,108,101,33)(26,126,64,94,67,111,102,36)(27,121,57,89,68,106,103,39)(28,124,58,92,69,109,104,34)(29,127,59,95,70,112,97,37)(30,122,60,90,71,107,98,40)(31,125,61,93,72,110,99,35)(32,128,62,96,65,105,100,38), (1,59,53,97)(2,64,54,102)(3,61,55,99)(4,58,56,104)(5,63,49,101)(6,60,50,98)(7,57,51,103)(8,62,52,100)(9,96,113,38)(10,93,114,35)(11,90,115,40)(12,95,116,37)(13,92,117,34)(14,89,118,39)(15,94,119,36)(16,91,120,33)(17,68,74,27)(18,65,75,32)(19,70,76,29)(20,67,77,26)(21,72,78,31)(22,69,79,28)(23,66,80,25)(24,71,73,30)(41,121,87,106)(42,126,88,111)(43,123,81,108)(44,128,82,105)(45,125,83,110)(46,122,84,107)(47,127,85,112)(48,124,86,109)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,43,76,120,53,81,19,16)(2,46,77,115,54,84,20,11)(3,41,78,118,55,87,21,14)(4,44,79,113,56,82,22,9)(5,47,80,116,49,85,23,12)(6,42,73,119,50,88,24,15)(7,45,74,114,51,83,17,10)(8,48,75,117,52,86,18,13)(25,123,63,91,66,108,101,33)(26,126,64,94,67,111,102,36)(27,121,57,89,68,106,103,39)(28,124,58,92,69,109,104,34)(29,127,59,95,70,112,97,37)(30,122,60,90,71,107,98,40)(31,125,61,93,72,110,99,35)(32,128,62,96,65,105,100,38), (1,59,53,97)(2,64,54,102)(3,61,55,99)(4,58,56,104)(5,63,49,101)(6,60,50,98)(7,57,51,103)(8,62,52,100)(9,96,113,38)(10,93,114,35)(11,90,115,40)(12,95,116,37)(13,92,117,34)(14,89,118,39)(15,94,119,36)(16,91,120,33)(17,68,74,27)(18,65,75,32)(19,70,76,29)(20,67,77,26)(21,72,78,31)(22,69,79,28)(23,66,80,25)(24,71,73,30)(41,121,87,106)(42,126,88,111)(43,123,81,108)(44,128,82,105)(45,125,83,110)(46,122,84,107)(47,127,85,112)(48,124,86,109) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,43,76,120,53,81,19,16),(2,46,77,115,54,84,20,11),(3,41,78,118,55,87,21,14),(4,44,79,113,56,82,22,9),(5,47,80,116,49,85,23,12),(6,42,73,119,50,88,24,15),(7,45,74,114,51,83,17,10),(8,48,75,117,52,86,18,13),(25,123,63,91,66,108,101,33),(26,126,64,94,67,111,102,36),(27,121,57,89,68,106,103,39),(28,124,58,92,69,109,104,34),(29,127,59,95,70,112,97,37),(30,122,60,90,71,107,98,40),(31,125,61,93,72,110,99,35),(32,128,62,96,65,105,100,38)], [(1,59,53,97),(2,64,54,102),(3,61,55,99),(4,58,56,104),(5,63,49,101),(6,60,50,98),(7,57,51,103),(8,62,52,100),(9,96,113,38),(10,93,114,35),(11,90,115,40),(12,95,116,37),(13,92,117,34),(14,89,118,39),(15,94,119,36),(16,91,120,33),(17,68,74,27),(18,65,75,32),(19,70,76,29),(20,67,77,26),(21,72,78,31),(22,69,79,28),(23,66,80,25),(24,71,73,30),(41,121,87,106),(42,126,88,111),(43,123,81,108),(44,128,82,105),(45,125,83,110),(46,122,84,107),(47,127,85,112),(48,124,86,109)]])

Matrix representation of C8.3Q16 in GL6(𝔽17)

1600000
0160000
000303
00140140
0001403
0030140
,
060000
1460000
00131053
00713145
005347
00145104
,
070000
1200000
0011871
0086110
001016118
0016786

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,14,0,3,0,0,3,0,14,0,0,0,0,14,0,14,0,0,3,0,3,0],[0,14,0,0,0,0,6,6,0,0,0,0,0,0,13,7,5,14,0,0,10,13,3,5,0,0,5,14,4,10,0,0,3,5,7,4],[0,12,0,0,0,0,7,0,0,0,0,0,0,0,11,8,10,16,0,0,8,6,16,7,0,0,7,1,11,8,0,0,1,10,8,6] >;

C8.3Q16 in GAP, Magma, Sage, TeX

C_8._3Q_{16}
% in TeX

G:=Group("C8.3Q16");
// GroupNames label

G:=SmallGroup(128,428);
// by ID

G=gap.SmallGroup(128,428);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,672,141,288,422,387,352,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,b*a*b^-1=a^3,c*a*c^-1=a^5,c*b*c^-1=a^4*b^-1>;
// generators/relations

Export

Character table of C8.3Q16 in TeX

׿
×
𝔽