p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8.3Q16, C42.247C23, C4⋊C4.69D4, (C2×C8).99D4, (C2×Q8).60D4, C4.44(C2×Q16), C8⋊4Q8.4C2, C8⋊2C8.10C2, C4⋊C8.33C22, C4.Q16.7C2, C8⋊2Q8.19C2, C4⋊Q8.68C22, (C4×C8).150C22, C2.9(C8.D4), C4.6Q16.6C2, (C4×Q8).48C22, C2.11(C4⋊2Q16), C4.45(C8.C22), C2.15(D4.4D4), C22.208(C4⋊D4), (C2×C4).32(C4○D4), (C2×C4).1282(C2×D4), SmallGroup(128,428)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.3Q16
G = < a,b,c | a8=b8=1, c2=b4, bab-1=a3, cac-1=a5, cbc-1=a4b-1 >
Subgroups: 144 in 70 conjugacy classes, 34 normal (22 characteristic)
C1, C2, C4, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×Q8, C2×Q8, C4×C8, C8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4⋊C8, C2.D8, C4×Q8, C4⋊Q8, C4.6Q16, C8⋊2C8, C8⋊4Q8, C4.Q16, C8⋊2Q8, C8.3Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C8.C22, C4⋊2Q16, C8.D4, D4.4D4, C8.3Q16
Character table of C8.3Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | √2 | -√2 | -√2 | 0 | 0 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -√2 | -√2 | √2 | 0 | 0 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -√2 | √2 | √2 | 0 | 0 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | √2 | √2 | -√2 | 0 | 0 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ20 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ21 | 4 | -4 | 4 | -4 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ22 | 4 | -4 | 4 | -4 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ23 | 4 | -4 | -4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 43 76 120 53 81 19 16)(2 46 77 115 54 84 20 11)(3 41 78 118 55 87 21 14)(4 44 79 113 56 82 22 9)(5 47 80 116 49 85 23 12)(6 42 73 119 50 88 24 15)(7 45 74 114 51 83 17 10)(8 48 75 117 52 86 18 13)(25 123 63 91 66 108 101 33)(26 126 64 94 67 111 102 36)(27 121 57 89 68 106 103 39)(28 124 58 92 69 109 104 34)(29 127 59 95 70 112 97 37)(30 122 60 90 71 107 98 40)(31 125 61 93 72 110 99 35)(32 128 62 96 65 105 100 38)
(1 59 53 97)(2 64 54 102)(3 61 55 99)(4 58 56 104)(5 63 49 101)(6 60 50 98)(7 57 51 103)(8 62 52 100)(9 96 113 38)(10 93 114 35)(11 90 115 40)(12 95 116 37)(13 92 117 34)(14 89 118 39)(15 94 119 36)(16 91 120 33)(17 68 74 27)(18 65 75 32)(19 70 76 29)(20 67 77 26)(21 72 78 31)(22 69 79 28)(23 66 80 25)(24 71 73 30)(41 121 87 106)(42 126 88 111)(43 123 81 108)(44 128 82 105)(45 125 83 110)(46 122 84 107)(47 127 85 112)(48 124 86 109)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,43,76,120,53,81,19,16)(2,46,77,115,54,84,20,11)(3,41,78,118,55,87,21,14)(4,44,79,113,56,82,22,9)(5,47,80,116,49,85,23,12)(6,42,73,119,50,88,24,15)(7,45,74,114,51,83,17,10)(8,48,75,117,52,86,18,13)(25,123,63,91,66,108,101,33)(26,126,64,94,67,111,102,36)(27,121,57,89,68,106,103,39)(28,124,58,92,69,109,104,34)(29,127,59,95,70,112,97,37)(30,122,60,90,71,107,98,40)(31,125,61,93,72,110,99,35)(32,128,62,96,65,105,100,38), (1,59,53,97)(2,64,54,102)(3,61,55,99)(4,58,56,104)(5,63,49,101)(6,60,50,98)(7,57,51,103)(8,62,52,100)(9,96,113,38)(10,93,114,35)(11,90,115,40)(12,95,116,37)(13,92,117,34)(14,89,118,39)(15,94,119,36)(16,91,120,33)(17,68,74,27)(18,65,75,32)(19,70,76,29)(20,67,77,26)(21,72,78,31)(22,69,79,28)(23,66,80,25)(24,71,73,30)(41,121,87,106)(42,126,88,111)(43,123,81,108)(44,128,82,105)(45,125,83,110)(46,122,84,107)(47,127,85,112)(48,124,86,109)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,43,76,120,53,81,19,16)(2,46,77,115,54,84,20,11)(3,41,78,118,55,87,21,14)(4,44,79,113,56,82,22,9)(5,47,80,116,49,85,23,12)(6,42,73,119,50,88,24,15)(7,45,74,114,51,83,17,10)(8,48,75,117,52,86,18,13)(25,123,63,91,66,108,101,33)(26,126,64,94,67,111,102,36)(27,121,57,89,68,106,103,39)(28,124,58,92,69,109,104,34)(29,127,59,95,70,112,97,37)(30,122,60,90,71,107,98,40)(31,125,61,93,72,110,99,35)(32,128,62,96,65,105,100,38), (1,59,53,97)(2,64,54,102)(3,61,55,99)(4,58,56,104)(5,63,49,101)(6,60,50,98)(7,57,51,103)(8,62,52,100)(9,96,113,38)(10,93,114,35)(11,90,115,40)(12,95,116,37)(13,92,117,34)(14,89,118,39)(15,94,119,36)(16,91,120,33)(17,68,74,27)(18,65,75,32)(19,70,76,29)(20,67,77,26)(21,72,78,31)(22,69,79,28)(23,66,80,25)(24,71,73,30)(41,121,87,106)(42,126,88,111)(43,123,81,108)(44,128,82,105)(45,125,83,110)(46,122,84,107)(47,127,85,112)(48,124,86,109) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,43,76,120,53,81,19,16),(2,46,77,115,54,84,20,11),(3,41,78,118,55,87,21,14),(4,44,79,113,56,82,22,9),(5,47,80,116,49,85,23,12),(6,42,73,119,50,88,24,15),(7,45,74,114,51,83,17,10),(8,48,75,117,52,86,18,13),(25,123,63,91,66,108,101,33),(26,126,64,94,67,111,102,36),(27,121,57,89,68,106,103,39),(28,124,58,92,69,109,104,34),(29,127,59,95,70,112,97,37),(30,122,60,90,71,107,98,40),(31,125,61,93,72,110,99,35),(32,128,62,96,65,105,100,38)], [(1,59,53,97),(2,64,54,102),(3,61,55,99),(4,58,56,104),(5,63,49,101),(6,60,50,98),(7,57,51,103),(8,62,52,100),(9,96,113,38),(10,93,114,35),(11,90,115,40),(12,95,116,37),(13,92,117,34),(14,89,118,39),(15,94,119,36),(16,91,120,33),(17,68,74,27),(18,65,75,32),(19,70,76,29),(20,67,77,26),(21,72,78,31),(22,69,79,28),(23,66,80,25),(24,71,73,30),(41,121,87,106),(42,126,88,111),(43,123,81,108),(44,128,82,105),(45,125,83,110),(46,122,84,107),(47,127,85,112),(48,124,86,109)]])
Matrix representation of C8.3Q16 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 3 |
0 | 0 | 14 | 0 | 14 | 0 |
0 | 0 | 0 | 14 | 0 | 3 |
0 | 0 | 3 | 0 | 14 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
14 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 10 | 5 | 3 |
0 | 0 | 7 | 13 | 14 | 5 |
0 | 0 | 5 | 3 | 4 | 7 |
0 | 0 | 14 | 5 | 10 | 4 |
0 | 7 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 8 | 7 | 1 |
0 | 0 | 8 | 6 | 1 | 10 |
0 | 0 | 10 | 16 | 11 | 8 |
0 | 0 | 16 | 7 | 8 | 6 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,14,0,3,0,0,3,0,14,0,0,0,0,14,0,14,0,0,3,0,3,0],[0,14,0,0,0,0,6,6,0,0,0,0,0,0,13,7,5,14,0,0,10,13,3,5,0,0,5,14,4,10,0,0,3,5,7,4],[0,12,0,0,0,0,7,0,0,0,0,0,0,0,11,8,10,16,0,0,8,6,16,7,0,0,7,1,11,8,0,0,1,10,8,6] >;
C8.3Q16 in GAP, Magma, Sage, TeX
C_8._3Q_{16}
% in TeX
G:=Group("C8.3Q16");
// GroupNames label
G:=SmallGroup(128,428);
// by ID
G=gap.SmallGroup(128,428);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,672,141,288,422,387,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,b*a*b^-1=a^3,c*a*c^-1=a^5,c*b*c^-1=a^4*b^-1>;
// generators/relations
Export