p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4⋊C4.2Q8, (C2×C4).26D8, (C2×C8).56D4, C4.35(C4⋊Q8), C22.91(C2×D8), C2.17(C8⋊7D4), C2.9(D4⋊Q8), (C22×C4).321D4, C23.936(C2×D4), C2.12(Q8.Q8), C2.17(C8.D4), C4.22(C42.C2), C22.126(C4○D8), C22.4Q16.27C2, (C22×C8).120C22, (C2×C42).387C22, C22.259(C4⋊D4), (C22×C4).1470C23, C22.113(C22⋊Q8), C4.115(C22.D4), C22.145(C8.C22), C23.65C23.23C2, C2.8(C23.81C23), (C2×C4⋊C8).39C2, (C2×C4).287(C2×Q8), (C2×C2.D8).17C2, (C2×C4).1379(C2×D4), (C2×C4).629(C4○D4), (C2×C4⋊C4).157C22, SmallGroup(128,818)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×C4).26D8
G = < a,b,c,d | a2=b4=c8=1, d2=b2, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=ab-1, dcd-1=c-1 >
Subgroups: 224 in 112 conjugacy classes, 52 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2.C42, C4⋊C8, C2.D8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.4Q16, C22.4Q16, C23.65C23, C2×C4⋊C8, C2×C2.D8, (C2×C4).26D8
Quotients: C1, C2, C22, D4, Q8, C23, D8, C2×D4, C2×Q8, C4○D4, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C4⋊Q8, C2×D8, C4○D8, C8.C22, C23.81C23, C8⋊7D4, C8.D4, D4⋊Q8, Q8.Q8, (C2×C4).26D8
(1 103)(2 104)(3 97)(4 98)(5 99)(6 100)(7 101)(8 102)(9 126)(10 127)(11 128)(12 121)(13 122)(14 123)(15 124)(16 125)(17 47)(18 48)(19 41)(20 42)(21 43)(22 44)(23 45)(24 46)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 49)(32 50)(33 63)(34 64)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)(65 77)(66 78)(67 79)(68 80)(69 73)(70 74)(71 75)(72 76)(81 107)(82 108)(83 109)(84 110)(85 111)(86 112)(87 105)(88 106)(89 119)(90 120)(91 113)(92 114)(93 115)(94 116)(95 117)(96 118)
(1 37 17 93)(2 94 18 38)(3 39 19 95)(4 96 20 40)(5 33 21 89)(6 90 22 34)(7 35 23 91)(8 92 24 36)(9 32 80 88)(10 81 73 25)(11 26 74 82)(12 83 75 27)(13 28 76 84)(14 85 77 29)(15 30 78 86)(16 87 79 31)(41 117 97 61)(42 62 98 118)(43 119 99 63)(44 64 100 120)(45 113 101 57)(46 58 102 114)(47 115 103 59)(48 60 104 116)(49 125 105 67)(50 68 106 126)(51 127 107 69)(52 70 108 128)(53 121 109 71)(54 72 110 122)(55 123 111 65)(56 66 112 124)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 32 17 88)(2 31 18 87)(3 30 19 86)(4 29 20 85)(5 28 21 84)(6 27 22 83)(7 26 23 82)(8 25 24 81)(9 115 80 59)(10 114 73 58)(11 113 74 57)(12 120 75 64)(13 119 76 63)(14 118 77 62)(15 117 78 61)(16 116 79 60)(33 122 89 72)(34 121 90 71)(35 128 91 70)(36 127 92 69)(37 126 93 68)(38 125 94 67)(39 124 95 66)(40 123 96 65)(41 112 97 56)(42 111 98 55)(43 110 99 54)(44 109 100 53)(45 108 101 52)(46 107 102 51)(47 106 103 50)(48 105 104 49)
G:=sub<Sym(128)| (1,103)(2,104)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,126)(10,127)(11,128)(12,121)(13,122)(14,123)(15,124)(16,125)(17,47)(18,48)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,49)(32,50)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(65,77)(66,78)(67,79)(68,80)(69,73)(70,74)(71,75)(72,76)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,105)(88,106)(89,119)(90,120)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118), (1,37,17,93)(2,94,18,38)(3,39,19,95)(4,96,20,40)(5,33,21,89)(6,90,22,34)(7,35,23,91)(8,92,24,36)(9,32,80,88)(10,81,73,25)(11,26,74,82)(12,83,75,27)(13,28,76,84)(14,85,77,29)(15,30,78,86)(16,87,79,31)(41,117,97,61)(42,62,98,118)(43,119,99,63)(44,64,100,120)(45,113,101,57)(46,58,102,114)(47,115,103,59)(48,60,104,116)(49,125,105,67)(50,68,106,126)(51,127,107,69)(52,70,108,128)(53,121,109,71)(54,72,110,122)(55,123,111,65)(56,66,112,124), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,32,17,88)(2,31,18,87)(3,30,19,86)(4,29,20,85)(5,28,21,84)(6,27,22,83)(7,26,23,82)(8,25,24,81)(9,115,80,59)(10,114,73,58)(11,113,74,57)(12,120,75,64)(13,119,76,63)(14,118,77,62)(15,117,78,61)(16,116,79,60)(33,122,89,72)(34,121,90,71)(35,128,91,70)(36,127,92,69)(37,126,93,68)(38,125,94,67)(39,124,95,66)(40,123,96,65)(41,112,97,56)(42,111,98,55)(43,110,99,54)(44,109,100,53)(45,108,101,52)(46,107,102,51)(47,106,103,50)(48,105,104,49)>;
G:=Group( (1,103)(2,104)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,126)(10,127)(11,128)(12,121)(13,122)(14,123)(15,124)(16,125)(17,47)(18,48)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,49)(32,50)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(65,77)(66,78)(67,79)(68,80)(69,73)(70,74)(71,75)(72,76)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,105)(88,106)(89,119)(90,120)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118), (1,37,17,93)(2,94,18,38)(3,39,19,95)(4,96,20,40)(5,33,21,89)(6,90,22,34)(7,35,23,91)(8,92,24,36)(9,32,80,88)(10,81,73,25)(11,26,74,82)(12,83,75,27)(13,28,76,84)(14,85,77,29)(15,30,78,86)(16,87,79,31)(41,117,97,61)(42,62,98,118)(43,119,99,63)(44,64,100,120)(45,113,101,57)(46,58,102,114)(47,115,103,59)(48,60,104,116)(49,125,105,67)(50,68,106,126)(51,127,107,69)(52,70,108,128)(53,121,109,71)(54,72,110,122)(55,123,111,65)(56,66,112,124), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,32,17,88)(2,31,18,87)(3,30,19,86)(4,29,20,85)(5,28,21,84)(6,27,22,83)(7,26,23,82)(8,25,24,81)(9,115,80,59)(10,114,73,58)(11,113,74,57)(12,120,75,64)(13,119,76,63)(14,118,77,62)(15,117,78,61)(16,116,79,60)(33,122,89,72)(34,121,90,71)(35,128,91,70)(36,127,92,69)(37,126,93,68)(38,125,94,67)(39,124,95,66)(40,123,96,65)(41,112,97,56)(42,111,98,55)(43,110,99,54)(44,109,100,53)(45,108,101,52)(46,107,102,51)(47,106,103,50)(48,105,104,49) );
G=PermutationGroup([[(1,103),(2,104),(3,97),(4,98),(5,99),(6,100),(7,101),(8,102),(9,126),(10,127),(11,128),(12,121),(13,122),(14,123),(15,124),(16,125),(17,47),(18,48),(19,41),(20,42),(21,43),(22,44),(23,45),(24,46),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,49),(32,50),(33,63),(34,64),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62),(65,77),(66,78),(67,79),(68,80),(69,73),(70,74),(71,75),(72,76),(81,107),(82,108),(83,109),(84,110),(85,111),(86,112),(87,105),(88,106),(89,119),(90,120),(91,113),(92,114),(93,115),(94,116),(95,117),(96,118)], [(1,37,17,93),(2,94,18,38),(3,39,19,95),(4,96,20,40),(5,33,21,89),(6,90,22,34),(7,35,23,91),(8,92,24,36),(9,32,80,88),(10,81,73,25),(11,26,74,82),(12,83,75,27),(13,28,76,84),(14,85,77,29),(15,30,78,86),(16,87,79,31),(41,117,97,61),(42,62,98,118),(43,119,99,63),(44,64,100,120),(45,113,101,57),(46,58,102,114),(47,115,103,59),(48,60,104,116),(49,125,105,67),(50,68,106,126),(51,127,107,69),(52,70,108,128),(53,121,109,71),(54,72,110,122),(55,123,111,65),(56,66,112,124)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,32,17,88),(2,31,18,87),(3,30,19,86),(4,29,20,85),(5,28,21,84),(6,27,22,83),(7,26,23,82),(8,25,24,81),(9,115,80,59),(10,114,73,58),(11,113,74,57),(12,120,75,64),(13,119,76,63),(14,118,77,62),(15,117,78,61),(16,116,79,60),(33,122,89,72),(34,121,90,71),(35,128,91,70),(36,127,92,69),(37,126,93,68),(38,125,94,67),(39,124,95,66),(40,123,96,65),(41,112,97,56),(42,111,98,55),(43,110,99,54),(44,109,100,53),(45,108,101,52),(46,107,102,51),(47,106,103,50),(48,105,104,49)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4P | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | - | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | Q8 | D4 | D4 | D8 | C4○D4 | C4○D8 | C8.C22 |
kernel | (C2×C4).26D8 | C22.4Q16 | C23.65C23 | C2×C4⋊C8 | C2×C2.D8 | C4⋊C4 | C2×C8 | C22×C4 | C2×C4 | C2×C4 | C22 | C22 |
# reps | 1 | 3 | 2 | 1 | 1 | 4 | 2 | 2 | 4 | 6 | 4 | 2 |
Matrix representation of (C2×C4).26D8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 13 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 14 | 3 |
0 | 13 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 4 |
0 | 0 | 0 | 0 | 4 | 6 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,5,5,0,0,0,0,5,12,0,0,0,0,0,0,0,13,0,0,0,0,4,0],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,5,12,0,0,0,0,12,12,0,0,0,0,0,0,3,14,0,0,0,0,3,3],[0,4,0,0,0,0,13,0,0,0,0,0,0,0,5,5,0,0,0,0,5,12,0,0,0,0,0,0,11,4,0,0,0,0,4,6] >;
(C2×C4).26D8 in GAP, Magma, Sage, TeX
(C_2\times C_4)._{26}D_8
% in TeX
G:=Group("(C2xC4).26D8");
// GroupNames label
G:=SmallGroup(128,818);
// by ID
G=gap.SmallGroup(128,818);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,64,422,387,58,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=a*b^-1,d*c*d^-1=c^-1>;
// generators/relations