Extensions 1→N→G→Q→1 with N=C2 and Q=D4.Q8

Direct product G=N×Q with N=C2 and Q=D4.Q8
dρLabelID
C2×D4.Q864C2xD4.Q8128,1804


Non-split extensions G=N.Q with N=C2 and Q=D4.Q8
extensionφ:Q→Aut NdρLabelID
C2.1(D4.Q8) = C42.100D4central extension (φ=1)64C2.1(D4.Q8)128,536
C2.2(D4.Q8) = C2.(C4×D8)central extension (φ=1)64C2.2(D4.Q8)128,594
C2.3(D4.Q8) = D4⋊(C4⋊C4)central extension (φ=1)64C2.3(D4.Q8)128,596
C2.4(D4.Q8) = C4.Q89C4central extension (φ=1)128C2.4(D4.Q8)128,651
C2.5(D4.Q8) = C2.D85C4central extension (φ=1)128C2.5(D4.Q8)128,653
C2.6(D4.Q8) = C42.31Q8central extension (φ=1)128C2.6(D4.Q8)128,681
C2.7(D4.Q8) = C42.123D4central extension (φ=1)128C2.7(D4.Q8)128,721
C2.8(D4.Q8) = C4⋊C4.84D4central stem extension (φ=1)64C2.8(D4.Q8)128,757
C2.9(D4.Q8) = C2.(C8⋊Q8)central stem extension (φ=1)128C2.9(D4.Q8)128,791
C2.10(D4.Q8) = C4⋊C4.106D4central stem extension (φ=1)64C2.10(D4.Q8)128,797
C2.11(D4.Q8) = (C2×C4).23D8central stem extension (φ=1)64C2.11(D4.Q8)128,799
C2.12(D4.Q8) = (C2×C4).21Q16central stem extension (φ=1)128C2.12(D4.Q8)128,819
C2.13(D4.Q8) = C4.(C4⋊Q8)central stem extension (φ=1)128C2.13(D4.Q8)128,820
C2.14(D4.Q8) = (C2×C8).168D4central stem extension (φ=1)64C2.14(D4.Q8)128,824
C2.15(D4.Q8) = C4⋊C4.Q8central stem extension (φ=1)128C2.15(D4.Q8)128,833

׿
×
𝔽