p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×C4).23D8, (C2×C8).51D4, C4⋊C4.108D4, (C2×D4).13Q8, C22.87(C2×D8), C2.20(C8⋊D4), C2.15(C4⋊D8), C2.15(C8⋊7D4), C2.8(D4⋊Q8), (C22×C4).156D4, C23.924(C2×D4), C2.11(D4.Q8), C4.37(C22⋊Q8), C4.155(C4⋊D4), C22.4Q16⋊26C2, (C22×C8).82C22, C4.35(C42⋊2C2), C22.118(C4○D8), (C2×C42).378C22, C2.21(Q8.D4), (C22×D4).90C22, C2.8(C23.Q8), C22.245(C4⋊D4), C22.146(C8⋊C22), (C22×C4).1458C23, C23.65C23⋊8C2, C22.111(C22⋊Q8), C22.135(C8.C22), C24.3C22.18C2, (C2×C4⋊C8)⋊21C2, (C2×C2.D8)⋊9C2, (C2×C4).285(C2×Q8), (C2×C4).1057(C2×D4), (C2×D4⋊C4).16C2, (C2×C4).622(C4○D4), (C2×C4⋊C4).143C22, SmallGroup(128,799)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×C4).23D8
G = < a,b,c,d | a2=b8=c4=1, d2=b6, dbd-1=ab=ba, ac=ca, ad=da, cbc-1=b-1, dcd-1=b6c-1 >
Subgroups: 344 in 142 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, D4⋊C4, C4⋊C8, C2.D8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22×D4, C22.4Q16, C23.65C23, C24.3C22, C2×D4⋊C4, C2×C4⋊C8, C2×C2.D8, (C2×C4).23D8
Quotients: C1, C2, C22, D4, Q8, C23, D8, C2×D4, C2×Q8, C4○D4, C4⋊D4, C22⋊Q8, C42⋊2C2, C2×D8, C4○D8, C8⋊C22, C8.C22, C23.Q8, C4⋊D8, Q8.D4, C8⋊7D4, C8⋊D4, D4⋊Q8, D4.Q8, (C2×C4).23D8
(1 47)(2 48)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 63)(10 64)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 53)(34 54)(35 55)(36 56)(37 49)(38 50)(39 51)(40 52)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 22 51 11)(2 21 52 10)(3 20 53 9)(4 19 54 16)(5 18 55 15)(6 17 56 14)(7 24 49 13)(8 23 50 12)(25 40 64 48)(26 39 57 47)(27 38 58 46)(28 37 59 45)(29 36 60 44)(30 35 61 43)(31 34 62 42)(32 33 63 41)
(1 9 7 15 5 13 3 11)(2 64 8 62 6 60 4 58)(10 46 16 44 14 42 12 48)(17 34 23 40 21 38 19 36)(18 55 24 53 22 51 20 49)(25 50 31 56 29 54 27 52)(26 39 32 37 30 35 28 33)(41 57 47 63 45 61 43 59)
G:=sub<Sym(64)| (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,22,51,11)(2,21,52,10)(3,20,53,9)(4,19,54,16)(5,18,55,15)(6,17,56,14)(7,24,49,13)(8,23,50,12)(25,40,64,48)(26,39,57,47)(27,38,58,46)(28,37,59,45)(29,36,60,44)(30,35,61,43)(31,34,62,42)(32,33,63,41), (1,9,7,15,5,13,3,11)(2,64,8,62,6,60,4,58)(10,46,16,44,14,42,12,48)(17,34,23,40,21,38,19,36)(18,55,24,53,22,51,20,49)(25,50,31,56,29,54,27,52)(26,39,32,37,30,35,28,33)(41,57,47,63,45,61,43,59)>;
G:=Group( (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,22,51,11)(2,21,52,10)(3,20,53,9)(4,19,54,16)(5,18,55,15)(6,17,56,14)(7,24,49,13)(8,23,50,12)(25,40,64,48)(26,39,57,47)(27,38,58,46)(28,37,59,45)(29,36,60,44)(30,35,61,43)(31,34,62,42)(32,33,63,41), (1,9,7,15,5,13,3,11)(2,64,8,62,6,60,4,58)(10,46,16,44,14,42,12,48)(17,34,23,40,21,38,19,36)(18,55,24,53,22,51,20,49)(25,50,31,56,29,54,27,52)(26,39,32,37,30,35,28,33)(41,57,47,63,45,61,43,59) );
G=PermutationGroup([[(1,47),(2,48),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,63),(10,64),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,53),(34,54),(35,55),(36,56),(37,49),(38,50),(39,51),(40,52)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,22,51,11),(2,21,52,10),(3,20,53,9),(4,19,54,16),(5,18,55,15),(6,17,56,14),(7,24,49,13),(8,23,50,12),(25,40,64,48),(26,39,57,47),(27,38,58,46),(28,37,59,45),(29,36,60,44),(30,35,61,43),(31,34,62,42),(32,33,63,41)], [(1,9,7,15,5,13,3,11),(2,64,8,62,6,60,4,58),(10,46,16,44,14,42,12,48),(17,34,23,40,21,38,19,36),(18,55,24,53,22,51,20,49),(25,50,31,56,29,54,27,52),(26,39,32,37,30,35,28,33),(41,57,47,63,45,61,43,59)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | Q8 | D8 | C4○D4 | C4○D8 | C8⋊C22 | C8.C22 |
kernel | (C2×C4).23D8 | C22.4Q16 | C23.65C23 | C24.3C22 | C2×D4⋊C4 | C2×C4⋊C8 | C2×C2.D8 | C4⋊C4 | C2×C8 | C22×C4 | C2×D4 | C2×C4 | C2×C4 | C22 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 6 | 4 | 1 | 1 |
Matrix representation of (C2×C4).23D8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 15 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 8 |
0 | 0 | 0 | 0 | 4 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 0 | 0 | 0 | 3 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 0 | 0 | 0 | 3 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,15,1,0,0,0,0,0,0,14,3,0,0,0,0,14,14,0,0,0,0,0,0,16,4,0,0,0,0,8,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,5,0,0,0,0,5,12,0,0,0,0,0,0,0,3,0,0,0,0,11,0],[1,16,0,0,0,0,0,16,0,0,0,0,0,0,5,12,0,0,0,0,5,5,0,0,0,0,0,0,0,3,0,0,0,0,11,0] >;
(C2×C4).23D8 in GAP, Magma, Sage, TeX
(C_2\times C_4)._{23}D_8
% in TeX
G:=Group("(C2xC4).23D8");
// GroupNames label
G:=SmallGroup(128,799);
// by ID
G=gap.SmallGroup(128,799);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,168,141,512,422,387,2019,521,248,2804,718,172,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=b^6,d*b*d^-1=a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*c*d^-1=b^6*c^-1>;
// generators/relations