p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.Q8, C42.26C22, C4⋊C8⋊7C2, C2.D8⋊5C2, C4.Q8⋊8C2, (C4×D4).9C2, (C2×C4).35D4, C4.15(C2×Q8), C42.C2⋊1C2, D4⋊C4.4C2, C2.13(C4○D8), C4.27(C4○D4), C4⋊C4.62C22, (C2×C8).35C22, C22.99(C2×D4), C2.16(C8⋊C22), (C2×C4).103C23, (C2×D4).59C22, C2.16(C22⋊Q8), SmallGroup(64,159)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.Q8
G = < a,b,c,d | a4=b2=c4=1, d2=a2c2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c-1 >
Character table of D4.Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | √2 | √-2 | -√-2 | -√2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | √2 | -√-2 | √-2 | -√2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | -√2 | √-2 | -√-2 | √2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | -√2 | -√-2 | √-2 | √2 | complex lifted from C4○D8 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6)(2 5)(3 8)(4 7)(9 16)(10 15)(11 14)(12 13)(17 23)(18 22)(19 21)(20 24)(25 31)(26 30)(27 29)(28 32)
(1 13 5 11)(2 14 6 12)(3 15 7 9)(4 16 8 10)(17 27 23 29)(18 28 24 30)(19 25 21 31)(20 26 22 32)
(1 21 7 17)(2 24 8 20)(3 23 5 19)(4 22 6 18)(9 31 13 27)(10 30 14 26)(11 29 15 25)(12 32 16 28)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,5)(3,8)(4,7)(9,16)(10,15)(11,14)(12,13)(17,23)(18,22)(19,21)(20,24)(25,31)(26,30)(27,29)(28,32), (1,13,5,11)(2,14,6,12)(3,15,7,9)(4,16,8,10)(17,27,23,29)(18,28,24,30)(19,25,21,31)(20,26,22,32), (1,21,7,17)(2,24,8,20)(3,23,5,19)(4,22,6,18)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,32,16,28)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,5)(3,8)(4,7)(9,16)(10,15)(11,14)(12,13)(17,23)(18,22)(19,21)(20,24)(25,31)(26,30)(27,29)(28,32), (1,13,5,11)(2,14,6,12)(3,15,7,9)(4,16,8,10)(17,27,23,29)(18,28,24,30)(19,25,21,31)(20,26,22,32), (1,21,7,17)(2,24,8,20)(3,23,5,19)(4,22,6,18)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,32,16,28) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6),(2,5),(3,8),(4,7),(9,16),(10,15),(11,14),(12,13),(17,23),(18,22),(19,21),(20,24),(25,31),(26,30),(27,29),(28,32)], [(1,13,5,11),(2,14,6,12),(3,15,7,9),(4,16,8,10),(17,27,23,29),(18,28,24,30),(19,25,21,31),(20,26,22,32)], [(1,21,7,17),(2,24,8,20),(3,23,5,19),(4,22,6,18),(9,31,13,27),(10,30,14,26),(11,29,15,25),(12,32,16,28)]])
D4.Q8 is a maximal subgroup of
C42.D2p: C42.447D4 C42.219D4 C42.449D4 C42.384D4 C42.225D4 C42.229D4 C42.232D4 C42.280D4 ...
C4⋊C4.D2p: C42.20C23 C42.22C23 C42.23C23 C42.353C23 C42.354C23 C42.356C23 C42.357C23 C42.423C23 ...
D4.Q8 is a maximal quotient of
C4.Q8⋊9C4 C2.D8⋊5C4 (C2×C4).21Q16 C4.(C4⋊Q8) (C2×C8).168D4 C4⋊C4.Q8
C4⋊C4.D2p: C2.(C4×D8) D4⋊(C4⋊C4) C42.31Q8 C4⋊C4.84D4 C2.(C8⋊Q8) C4⋊C4.106D4 (C2×C4).23D8 D4.Dic6 ...
C42.D2p: C42.100D4 C42.123D4 D12.3Q8 D20.3Q8 D28.3Q8 ...
Matrix representation of D4.Q8 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 3 | 14 |
0 | 0 | 14 | 14 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[1,0,0,0,0,16,0,0,0,0,0,1,0,0,1,0],[4,0,0,0,0,13,0,0,0,0,4,0,0,0,0,4],[0,16,0,0,1,0,0,0,0,0,3,14,0,0,14,14] >;
D4.Q8 in GAP, Magma, Sage, TeX
D_4.Q_8
% in TeX
G:=Group("D4.Q8");
// GroupNames label
G:=SmallGroup(64,159);
// by ID
G=gap.SmallGroup(64,159);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,48,121,247,362,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^4=1,d^2=a^2*c^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations
Export
Subgroup lattice of D4.Q8 in TeX
Character table of D4.Q8 in TeX