Copied to
clipboard

G = C4.(C4⋊Q8)  order 128 = 27

8th non-split extension by C4 of C4⋊Q8 acting via C4⋊Q8/C2×Q8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4⋊C4.4Q8, (C2×C8).166D4, C4.37(C4⋊Q8), (C2×C4).42SD16, C2.23(C88D4), C2.23(C8⋊D4), C2.9(Q8⋊Q8), C2.9(D42Q8), (C22×C4).323D4, C23.938(C2×D4), C2.13(D4.Q8), C2.13(Q8.Q8), C4.24(C42.C2), C22.128(C4○D8), C22.4Q16.29C2, (C22×C8).328C22, (C2×C42).389C22, C22.107(C2×SD16), C22.261(C4⋊D4), C22.157(C8⋊C22), (C22×C4).1472C23, C22.115(C22⋊Q8), C4.117(C22.D4), C22.146(C8.C22), C23.65C23.25C2, C2.10(C23.81C23), (C2×C4⋊C8).49C2, (C2×C4).289(C2×Q8), (C2×C4.Q8).27C2, (C2×C4).1381(C2×D4), (C2×C4).631(C4○D4), (C2×C4⋊C4).159C22, SmallGroup(128,820)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — C4.(C4⋊Q8)
C1C2C22C2×C4C22×C4C2×C4⋊C4C23.65C23 — C4.(C4⋊Q8)
C1C2C22×C4 — C4.(C4⋊Q8)
C1C23C2×C42 — C4.(C4⋊Q8)
C1C2C2C22×C4 — C4.(C4⋊Q8)

Generators and relations for C4.(C4⋊Q8)
 G = < a,b,c,d | a4=b4=1, c4=a2, d2=a-1c2, bab-1=dad-1=a-1, ac=ca, cbc-1=a-1b, dbd-1=a-1b-1, dcd-1=c3 >

Subgroups: 224 in 112 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2.C42, C4⋊C8, C4.Q8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.4Q16, C23.65C23, C2×C4⋊C8, C2×C4.Q8, C4.(C4⋊Q8)
Quotients: C1, C2, C22, D4, Q8, C23, SD16, C2×D4, C2×Q8, C4○D4, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C4⋊Q8, C2×SD16, C4○D8, C8⋊C22, C8.C22, C23.81C23, C88D4, C8⋊D4, Q8⋊Q8, D42Q8, D4.Q8, Q8.Q8, C4.(C4⋊Q8)

Smallest permutation representation of C4.(C4⋊Q8)
Regular action on 128 points
Generators in S128
(1 85 5 81)(2 86 6 82)(3 87 7 83)(4 88 8 84)(9 74 13 78)(10 75 14 79)(11 76 15 80)(12 77 16 73)(17 39 21 35)(18 40 22 36)(19 33 23 37)(20 34 24 38)(25 95 29 91)(26 96 30 92)(27 89 31 93)(28 90 32 94)(41 99 45 103)(42 100 46 104)(43 101 47 97)(44 102 48 98)(49 107 53 111)(50 108 54 112)(51 109 55 105)(52 110 56 106)(57 115 61 119)(58 116 62 120)(59 117 63 113)(60 118 64 114)(65 126 69 122)(66 127 70 123)(67 128 71 124)(68 121 72 125)
(1 122 47 73)(2 66 48 13)(3 128 41 79)(4 72 42 11)(5 126 43 77)(6 70 44 9)(7 124 45 75)(8 68 46 15)(10 83 71 103)(12 81 65 101)(14 87 67 99)(16 85 69 97)(17 28 117 56)(18 91 118 107)(19 26 119 54)(20 89 120 105)(21 32 113 52)(22 95 114 111)(23 30 115 50)(24 93 116 109)(25 60 53 36)(27 58 55 34)(29 64 49 40)(31 62 51 38)(33 92 57 108)(35 90 59 106)(37 96 61 112)(39 94 63 110)(74 86 123 98)(76 84 125 104)(78 82 127 102)(80 88 121 100)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 91 83 31)(2 94 84 26)(3 89 85 29)(4 92 86 32)(5 95 87 27)(6 90 88 30)(7 93 81 25)(8 96 82 28)(9 117 80 61)(10 120 73 64)(11 115 74 59)(12 118 75 62)(13 113 76 57)(14 116 77 60)(15 119 78 63)(16 114 79 58)(17 121 37 70)(18 124 38 65)(19 127 39 68)(20 122 40 71)(21 125 33 66)(22 128 34 69)(23 123 35 72)(24 126 36 67)(41 105 97 49)(42 108 98 52)(43 111 99 55)(44 106 100 50)(45 109 101 53)(46 112 102 56)(47 107 103 51)(48 110 104 54)

G:=sub<Sym(128)| (1,85,5,81)(2,86,6,82)(3,87,7,83)(4,88,8,84)(9,74,13,78)(10,75,14,79)(11,76,15,80)(12,77,16,73)(17,39,21,35)(18,40,22,36)(19,33,23,37)(20,34,24,38)(25,95,29,91)(26,96,30,92)(27,89,31,93)(28,90,32,94)(41,99,45,103)(42,100,46,104)(43,101,47,97)(44,102,48,98)(49,107,53,111)(50,108,54,112)(51,109,55,105)(52,110,56,106)(57,115,61,119)(58,116,62,120)(59,117,63,113)(60,118,64,114)(65,126,69,122)(66,127,70,123)(67,128,71,124)(68,121,72,125), (1,122,47,73)(2,66,48,13)(3,128,41,79)(4,72,42,11)(5,126,43,77)(6,70,44,9)(7,124,45,75)(8,68,46,15)(10,83,71,103)(12,81,65,101)(14,87,67,99)(16,85,69,97)(17,28,117,56)(18,91,118,107)(19,26,119,54)(20,89,120,105)(21,32,113,52)(22,95,114,111)(23,30,115,50)(24,93,116,109)(25,60,53,36)(27,58,55,34)(29,64,49,40)(31,62,51,38)(33,92,57,108)(35,90,59,106)(37,96,61,112)(39,94,63,110)(74,86,123,98)(76,84,125,104)(78,82,127,102)(80,88,121,100), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,91,83,31)(2,94,84,26)(3,89,85,29)(4,92,86,32)(5,95,87,27)(6,90,88,30)(7,93,81,25)(8,96,82,28)(9,117,80,61)(10,120,73,64)(11,115,74,59)(12,118,75,62)(13,113,76,57)(14,116,77,60)(15,119,78,63)(16,114,79,58)(17,121,37,70)(18,124,38,65)(19,127,39,68)(20,122,40,71)(21,125,33,66)(22,128,34,69)(23,123,35,72)(24,126,36,67)(41,105,97,49)(42,108,98,52)(43,111,99,55)(44,106,100,50)(45,109,101,53)(46,112,102,56)(47,107,103,51)(48,110,104,54)>;

G:=Group( (1,85,5,81)(2,86,6,82)(3,87,7,83)(4,88,8,84)(9,74,13,78)(10,75,14,79)(11,76,15,80)(12,77,16,73)(17,39,21,35)(18,40,22,36)(19,33,23,37)(20,34,24,38)(25,95,29,91)(26,96,30,92)(27,89,31,93)(28,90,32,94)(41,99,45,103)(42,100,46,104)(43,101,47,97)(44,102,48,98)(49,107,53,111)(50,108,54,112)(51,109,55,105)(52,110,56,106)(57,115,61,119)(58,116,62,120)(59,117,63,113)(60,118,64,114)(65,126,69,122)(66,127,70,123)(67,128,71,124)(68,121,72,125), (1,122,47,73)(2,66,48,13)(3,128,41,79)(4,72,42,11)(5,126,43,77)(6,70,44,9)(7,124,45,75)(8,68,46,15)(10,83,71,103)(12,81,65,101)(14,87,67,99)(16,85,69,97)(17,28,117,56)(18,91,118,107)(19,26,119,54)(20,89,120,105)(21,32,113,52)(22,95,114,111)(23,30,115,50)(24,93,116,109)(25,60,53,36)(27,58,55,34)(29,64,49,40)(31,62,51,38)(33,92,57,108)(35,90,59,106)(37,96,61,112)(39,94,63,110)(74,86,123,98)(76,84,125,104)(78,82,127,102)(80,88,121,100), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,91,83,31)(2,94,84,26)(3,89,85,29)(4,92,86,32)(5,95,87,27)(6,90,88,30)(7,93,81,25)(8,96,82,28)(9,117,80,61)(10,120,73,64)(11,115,74,59)(12,118,75,62)(13,113,76,57)(14,116,77,60)(15,119,78,63)(16,114,79,58)(17,121,37,70)(18,124,38,65)(19,127,39,68)(20,122,40,71)(21,125,33,66)(22,128,34,69)(23,123,35,72)(24,126,36,67)(41,105,97,49)(42,108,98,52)(43,111,99,55)(44,106,100,50)(45,109,101,53)(46,112,102,56)(47,107,103,51)(48,110,104,54) );

G=PermutationGroup([[(1,85,5,81),(2,86,6,82),(3,87,7,83),(4,88,8,84),(9,74,13,78),(10,75,14,79),(11,76,15,80),(12,77,16,73),(17,39,21,35),(18,40,22,36),(19,33,23,37),(20,34,24,38),(25,95,29,91),(26,96,30,92),(27,89,31,93),(28,90,32,94),(41,99,45,103),(42,100,46,104),(43,101,47,97),(44,102,48,98),(49,107,53,111),(50,108,54,112),(51,109,55,105),(52,110,56,106),(57,115,61,119),(58,116,62,120),(59,117,63,113),(60,118,64,114),(65,126,69,122),(66,127,70,123),(67,128,71,124),(68,121,72,125)], [(1,122,47,73),(2,66,48,13),(3,128,41,79),(4,72,42,11),(5,126,43,77),(6,70,44,9),(7,124,45,75),(8,68,46,15),(10,83,71,103),(12,81,65,101),(14,87,67,99),(16,85,69,97),(17,28,117,56),(18,91,118,107),(19,26,119,54),(20,89,120,105),(21,32,113,52),(22,95,114,111),(23,30,115,50),(24,93,116,109),(25,60,53,36),(27,58,55,34),(29,64,49,40),(31,62,51,38),(33,92,57,108),(35,90,59,106),(37,96,61,112),(39,94,63,110),(74,86,123,98),(76,84,125,104),(78,82,127,102),(80,88,121,100)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,91,83,31),(2,94,84,26),(3,89,85,29),(4,92,86,32),(5,95,87,27),(6,90,88,30),(7,93,81,25),(8,96,82,28),(9,117,80,61),(10,120,73,64),(11,115,74,59),(12,118,75,62),(13,113,76,57),(14,116,77,60),(15,119,78,63),(16,114,79,58),(17,121,37,70),(18,124,38,65),(19,127,39,68),(20,122,40,71),(21,125,33,66),(22,128,34,69),(23,123,35,72),(24,126,36,67),(41,105,97,49),(42,108,98,52),(43,111,99,55),(44,106,100,50),(45,109,101,53),(46,112,102,56),(47,107,103,51),(48,110,104,54)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim1111122222244
type+++++-+++-
imageC1C2C2C2C2Q8D4D4SD16C4○D4C4○D8C8⋊C22C8.C22
kernelC4.(C4⋊Q8)C22.4Q16C23.65C23C2×C4⋊C8C2×C4.Q8C4⋊C4C2×C8C22×C4C2×C4C2×C4C22C22C22
# reps1321142246411

Matrix representation of C4.(C4⋊Q8) in GL6(𝔽17)

100000
010000
001000
000100
0000130
000004
,
1600000
0160000
00121200
0012500
000002
000080
,
400000
16130000
0016000
0001600
000080
000002
,
1320000
040000
0016200
000100
000001
000010

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,0,0,0,0,0,0,4],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,12,12,0,0,0,0,12,5,0,0,0,0,0,0,0,8,0,0,0,0,2,0],[4,16,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,8,0,0,0,0,0,0,2],[13,0,0,0,0,0,2,4,0,0,0,0,0,0,16,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C4.(C4⋊Q8) in GAP, Magma, Sage, TeX

C_4.(C_4\rtimes Q_8)
% in TeX

G:=Group("C4.(C4:Q8)");
// GroupNames label

G:=SmallGroup(128,820);
// by ID

G=gap.SmallGroup(128,820);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,560,141,64,422,387,58,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2,d^2=a^-1*c^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽