Extensions 1→N→G→Q→1 with N=M4(2) and Q=C8

Direct product G=N×Q with N=M4(2) and Q=C8

Semidirect products G=N:Q with N=M4(2) and Q=C8
extensionφ:Q→Out NdρLabelID
M4(2)⋊1C8 = M4(2)⋊1C8φ: C8/C4C2 ⊆ Out M4(2)64M4(2):1C8128,297
M4(2)⋊2C8 = M4(2)⋊C8φ: C8/C4C2 ⊆ Out M4(2)64M4(2):2C8128,10
M4(2)⋊3C8 = C42.3Q8φ: C8/C4C2 ⊆ Out M4(2)64M4(2):3C8128,15

Non-split extensions G=N.Q with N=M4(2) and Q=C8
extensionφ:Q→Out NdρLabelID
M4(2).1C8 = M4(2).1C8φ: C8/C4C2 ⊆ Out M4(2)324M4(2).1C8128,885
M4(2).2C8 = M4(2).C8φ: C8/C4C2 ⊆ Out M4(2)324M4(2).2C8128,110
M4(2).3C8 = M5(2)⋊7C4φ: C8/C4C2 ⊆ Out M4(2)64M4(2).3C8128,111
M4(2).4C8 = D4.C16φ: C8/C4C2 ⊆ Out M4(2)642M4(2).4C8128,133
M4(2).5C8 = C162M5(2)φ: trivial image64M4(2).5C8128,840
M4(2).6C8 = D4○C32φ: trivial image642M4(2).6C8128,990