Extensions 1→N→G→Q→1 with N=C2 and Q=C82M4(2)

Direct product G=N×Q with N=C2 and Q=C82M4(2)
dρLabelID
C2×C82M4(2)64C2xC8o2M4(2)128,1604


Non-split extensions G=N.Q with N=C2 and Q=C82M4(2)
extensionφ:Q→Aut NdρLabelID
C2.1(C82M4(2)) = C8×M4(2)central extension (φ=1)64C2.1(C8o2M4(2))128,181
C2.2(C82M4(2)) = C82⋊C2central extension (φ=1)64C2.2(C8o2M4(2))128,182
C2.3(C82M4(2)) = C2.C43central extension (φ=1)128C2.3(C8o2M4(2))128,458
C2.4(C82M4(2)) = C8×C22⋊C4central extension (φ=1)64C2.4(C8o2M4(2))128,483
C2.5(C82M4(2)) = C8×C4⋊C4central extension (φ=1)128C2.5(C8o2M4(2))128,501
C2.6(C82M4(2)) = C89M4(2)central stem extension (φ=1)64C2.6(C8o2M4(2))128,183
C2.7(C82M4(2)) = C23.27C42central stem extension (φ=1)64C2.7(C8o2M4(2))128,184
C2.8(C82M4(2)) = C8215C2central stem extension (φ=1)64C2.8(C8o2M4(2))128,185
C2.9(C82M4(2)) = C822C2central stem extension (φ=1)64C2.9(C8o2M4(2))128,186
C2.10(C82M4(2)) = C23.29C42central stem extension (φ=1)64C2.10(C8o2M4(2))128,461
C2.11(C82M4(2)) = (C4×C8)⋊12C4central stem extension (φ=1)128C2.11(C8o2M4(2))128,478
C2.12(C82M4(2)) = C42.379D4central stem extension (φ=1)64C2.12(C8o2M4(2))128,482
C2.13(C82M4(2)) = C23.36C42central stem extension (φ=1)64C2.13(C8o2M4(2))128,484
C2.14(C82M4(2)) = C23.17C42central stem extension (φ=1)64C2.14(C8o2M4(2))128,485
C2.15(C82M4(2)) = C42.45Q8central stem extension (φ=1)128C2.15(C8o2M4(2))128,500
C2.16(C82M4(2)) = C4⋊C813C4central stem extension (φ=1)128C2.16(C8o2M4(2))128,502
C2.17(C82M4(2)) = C4⋊C814C4central stem extension (φ=1)128C2.17(C8o2M4(2))128,503

׿
×
𝔽