Copied to
clipboard

G = C89M4(2)  order 128 = 27

3rd semidirect product of C8 and M4(2) acting via M4(2)/C2×C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C89M4(2), C23.26C42, C42.743C23, C4⋊C8.18C4, (C4×C8).35C4, C8⋊C819C2, C8⋊C4.11C4, C4.9(C8⋊C4), C4.53(C8○D4), C22⋊C8.17C4, (C2×C4).60C42, (C22×C8).44C4, C2.5(C4×M4(2)), C42.242(C2×C4), (C4×C8).360C22, C4.57(C2×M4(2)), (C2×C4).41M4(2), C22.8(C8⋊C4), (C4×M4(2)).13C2, (C2×M4(2)).21C4, C22.40(C2×C42), C2.6(C82M4(2)), C42.12C4.41C2, (C2×C42).1030C22, (C2×C4×C8).59C2, C2.5(C2×C8⋊C4), (C2×C8).117(C2×C4), (C2×C4).580(C22×C4), (C22×C4).392(C2×C4), SmallGroup(128,183)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C89M4(2)
C1C2C22C2×C4C42C2×C42C2×C4×C8 — C89M4(2)
C1C22 — C89M4(2)
C1C42 — C89M4(2)
C1C22C22C42 — C89M4(2)

Generators and relations for C89M4(2)
 G = < a,b,c | a8=b8=c2=1, bab-1=a5, ac=ca, cbc=b5 >

Subgroups: 132 in 104 conjugacy classes, 76 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, M4(2), C22×C4, C4×C8, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C22×C8, C2×M4(2), C8⋊C8, C2×C4×C8, C4×M4(2), C42.12C4, C89M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, C42, M4(2), C22×C4, C8⋊C4, C2×C42, C2×M4(2), C8○D4, C2×C8⋊C4, C4×M4(2), C82M4(2), C89M4(2)

Smallest permutation representation of C89M4(2)
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 19 36 54 27 43 12 59)(2 24 37 51 28 48 13 64)(3 21 38 56 29 45 14 61)(4 18 39 53 30 42 15 58)(5 23 40 50 31 47 16 63)(6 20 33 55 32 44 9 60)(7 17 34 52 25 41 10 57)(8 22 35 49 26 46 11 62)
(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(49 62)(50 63)(51 64)(52 57)(53 58)(54 59)(55 60)(56 61)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,36,54,27,43,12,59)(2,24,37,51,28,48,13,64)(3,21,38,56,29,45,14,61)(4,18,39,53,30,42,15,58)(5,23,40,50,31,47,16,63)(6,20,33,55,32,44,9,60)(7,17,34,52,25,41,10,57)(8,22,35,49,26,46,11,62), (17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,36,54,27,43,12,59)(2,24,37,51,28,48,13,64)(3,21,38,56,29,45,14,61)(4,18,39,53,30,42,15,58)(5,23,40,50,31,47,16,63)(6,20,33,55,32,44,9,60)(7,17,34,52,25,41,10,57)(8,22,35,49,26,46,11,62), (17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,19,36,54,27,43,12,59),(2,24,37,51,28,48,13,64),(3,21,38,56,29,45,14,61),(4,18,39,53,30,42,15,58),(5,23,40,50,31,47,16,63),(6,20,33,55,32,44,9,60),(7,17,34,52,25,41,10,57),(8,22,35,49,26,46,11,62)], [(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(49,62),(50,63),(51,64),(52,57),(53,58),(54,59),(55,60),(56,61)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A···4L4M···4R8A···8P8Q···8AF
order1222224···44···48···88···8
size1111221···12···22···24···4

56 irreducible representations

dim11111111111222
type+++++
imageC1C2C2C2C2C4C4C4C4C4C4M4(2)M4(2)C8○D4
kernelC89M4(2)C8⋊C8C2×C4×C8C4×M4(2)C42.12C4C4×C8C8⋊C4C22⋊C8C4⋊C8C22×C8C2×M4(2)C8C2×C4C4
# reps14111444444888

Matrix representation of C89M4(2) in GL4(𝔽17) generated by

4000
0400
0001
0040
,
51500
61200
0072
00910
,
1000
51600
0010
0001
G:=sub<GL(4,GF(17))| [4,0,0,0,0,4,0,0,0,0,0,4,0,0,1,0],[5,6,0,0,15,12,0,0,0,0,7,9,0,0,2,10],[1,5,0,0,0,16,0,0,0,0,1,0,0,0,0,1] >;

C89M4(2) in GAP, Magma, Sage, TeX

C_8\rtimes_9M_4(2)
% in TeX

G:=Group("C8:9M4(2)");
// GroupNames label

G:=SmallGroup(128,183);
// by ID

G=gap.SmallGroup(128,183);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,56,925,120,758,136,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=a^5,a*c=c*a,c*b*c=b^5>;
// generators/relations

׿
×
𝔽