p-group, metabelian, nilpotent (class 2), monomial
Aliases: C8○2M4(2), C4.5C42, M4(2)⋊5C4, C22.5C42, C42.60C22, C8○(C4⋊C4), (C2×C8)⋊9C4, (C4×C8)⋊14C2, C8○(C8⋊C4), C4⋊C4.10C4, C8○(C22⋊C4), C8.12(C2×C4), C8⋊C4⋊13C2, (C2×C8)○M4(2), C8○(C2×M4(2)), C2.1(C8○D4), C22⋊C4.6C4, C2.7(C2×C42), C8○(C42⋊C2), C4.34(C22×C4), (C22×C8).15C2, (C2×C8).99C22, C23.15(C2×C4), (C2×C4).143C23, C42⋊C2.14C2, (C2×M4(2)).17C2, C22.19(C22×C4), (C22×C4).106C22, (C2×C8)○(C8⋊C4), (C2×C4).34(C2×C4), (C2×C8)○(C42⋊C2), SmallGroup(64,86)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8○2M4(2)
G = < a,b,c | a8=c2=1, b4=a4, ab=ba, ac=ca, cbc=a4b >
Subgroups: 73 in 65 conjugacy classes, 57 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C4×C8, C8⋊C4, C42⋊C2, C22×C8, C2×M4(2), C8○2M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, C42, C22×C4, C2×C42, C8○D4, C8○2M4(2)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 23 25 16 5 19 29 12)(2 24 26 9 6 20 30 13)(3 17 27 10 7 21 31 14)(4 18 28 11 8 22 32 15)
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23,25,16,5,19,29,12)(2,24,26,9,6,20,30,13)(3,17,27,10,7,21,31,14)(4,18,28,11,8,22,32,15), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23,25,16,5,19,29,12)(2,24,26,9,6,20,30,13)(3,17,27,10,7,21,31,14)(4,18,28,11,8,22,32,15), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,23,25,16,5,19,29,12),(2,24,26,9,6,20,30,13),(3,17,27,10,7,21,31,14),(4,18,28,11,8,22,32,15)], [(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24)]])
C8○2M4(2) is a maximal subgroup of
M4(2).C8 M5(2)⋊7C4 C23.5C42 C8.(C4⋊C4) M4(2).3Q8 M4(2).24D4 C4.10D4⋊3C4 C4.D4⋊3C4 M4(2).5Q8 M4(2).6Q8 M4(2).27D4 M4(2).30D4 M4(2).31D4 M4(2).32D4 M4(2).33D4 C4⋊C4.7C8 M4(2).1C8 C8.12M4(2) C8.19M4(2) M4(2)○2M4(2) C42.262C23 C42.678C23 C42.264C23 C42.265C23 M4(2)⋊22D4 C42.275C23 C42.276C23 C42.277C23 C42.278C23 C42.279C23 C42.280C23 C42.281C23 C42.283C23 M4(2)○D8 C42.286C23 C42.287C23 M4(2)⋊9Q8 C42.291C23 C42.292C23 C42.293C23 C42.294C23 C42.366C23 C42.367C23 M4(2).20D4 M4(2)⋊3Q8 M4(2)⋊4Q8 C42.385C23 C42.387C23 C42.389C23 C42.390C23 Dic5.C42
D2p.C42: Q8.C42 D4.3C42 C4×C8○D4 D4.5C42 D6.C42 D6.4C42 D10.5C42 D10.7C42 ...
C4p.C42: C8.16C42 C8.14C42 C8.5C42 C16○2M5(2) C8.23C42 C12.5C42 C12.12C42 C12.7C42 ...
C8⋊pD4⋊C2: M4(2)⋊10D4 M4(2)⋊11D4 C42.386C23 C42.388C23 C42.391C23 ...
C8○2M4(2) is a maximal quotient of
C8×M4(2) C82⋊C2 C8⋊9M4(2) C23.27C42 C82⋊15C2 C82⋊2C2 C23.29C42 (C4×C8)⋊12C4 C8×C22⋊C4 C23.36C42 C23.17C42 C8×C4⋊C4 C4⋊C8⋊13C4 C4⋊C8⋊14C4 Dic5.C42
C4p.C42: C2.C43 C12.5C42 C12.12C42 C12.7C42 C20.35C42 C20.42C42 C20.37C42 D10.C42 ...
C42.D2p: C42.379D4 C42.45Q8 D6.C42 D6.4C42 D10.5C42 D10.7C42 D14.C42 D14.4C42 ...
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 8A | ··· | 8H | 8I | ··· | 8T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C8○D4 |
kernel | C8○2M4(2) | C4×C8 | C8⋊C4 | C42⋊C2 | C22×C8 | C2×M4(2) | C22⋊C4 | C4⋊C4 | C2×C8 | M4(2) | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 4 | 8 | 8 | 8 |
Matrix representation of C8○2M4(2) ►in GL3(𝔽17) generated by
13 | 0 | 0 |
0 | 15 | 0 |
0 | 0 | 15 |
1 | 0 | 0 |
0 | 0 | 8 |
0 | 8 | 0 |
16 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 16 |
G:=sub<GL(3,GF(17))| [13,0,0,0,15,0,0,0,15],[1,0,0,0,0,8,0,8,0],[16,0,0,0,1,0,0,0,16] >;
C8○2M4(2) in GAP, Magma, Sage, TeX
C_8\circ_2M_4(2)
% in TeX
G:=Group("C8o2M4(2)");
// GroupNames label
G:=SmallGroup(64,86);
// by ID
G=gap.SmallGroup(64,86);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,48,103,332,117]);
// Polycyclic
G:=Group<a,b,c|a^8=c^2=1,b^4=a^4,a*b=b*a,a*c=c*a,c*b*c=a^4*b>;
// generators/relations