Extensions 1→N→G→Q→1 with N=D4×C9 and Q=C2

Direct product G=N×Q with N=D4×C9 and Q=C2
dρLabelID
D4×C1872D4xC18144,48

Semidirect products G=N:Q with N=D4×C9 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C9)⋊1C2 = D4⋊D9φ: C2/C1C2 ⊆ Out D4×C9724+(D4xC9):1C2144,16
(D4×C9)⋊2C2 = D4×D9φ: C2/C1C2 ⊆ Out D4×C9364+(D4xC9):2C2144,41
(D4×C9)⋊3C2 = D42D9φ: C2/C1C2 ⊆ Out D4×C9724-(D4xC9):3C2144,42
(D4×C9)⋊4C2 = C9×D8φ: C2/C1C2 ⊆ Out D4×C9722(D4xC9):4C2144,25
(D4×C9)⋊5C2 = C9×C4○D4φ: trivial image722(D4xC9):5C2144,50

Non-split extensions G=N.Q with N=D4×C9 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C9).1C2 = D4.D9φ: C2/C1C2 ⊆ Out D4×C9724-(D4xC9).1C2144,15
(D4×C9).2C2 = C9×SD16φ: C2/C1C2 ⊆ Out D4×C9722(D4xC9).2C2144,26

׿
×
𝔽