Copied to
clipboard

G = D4×C18order 144 = 24·32

Direct product of C18 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C18, C232C18, C364C22, C18.11C23, C4⋊(C2×C18), C3.(C6×D4), (C6×D4).C3, (C2×C4)⋊2C18, (C2×C36)⋊6C2, (C3×D4).5C6, C6.17(C3×D4), (C2×C12).10C6, C12.20(C2×C6), C222(C2×C18), (C2×C18)⋊2C22, (C22×C18)⋊1C2, (C22×C6).6C6, C6.11(C22×C6), C2.1(C22×C18), (C2×C18)(C6×D4), (C2×C6).3(C2×C6), SmallGroup(144,48)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C18
C1C3C6C18C2×C18D4×C9 — D4×C18
C1C2 — D4×C18
C1C2×C18 — D4×C18

Generators and relations for D4×C18
 G = < a,b,c | a18=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 105 in 81 conjugacy classes, 57 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, D4, C23, C9, C12, C2×C6, C2×C6, C2×C6, C2×D4, C18, C18, C18, C2×C12, C3×D4, C22×C6, C36, C2×C18, C2×C18, C2×C18, C6×D4, C2×C36, D4×C9, C22×C18, D4×C18
Quotients: C1, C2, C3, C22, C6, D4, C23, C9, C2×C6, C2×D4, C18, C3×D4, C22×C6, C2×C18, C6×D4, D4×C9, C22×C18, D4×C18

Smallest permutation representation of D4×C18
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 37 59 31)(2 38 60 32)(3 39 61 33)(4 40 62 34)(5 41 63 35)(6 42 64 36)(7 43 65 19)(8 44 66 20)(9 45 67 21)(10 46 68 22)(11 47 69 23)(12 48 70 24)(13 49 71 25)(14 50 72 26)(15 51 55 27)(16 52 56 28)(17 53 57 29)(18 54 58 30)
(1 46)(2 47)(3 48)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 65)(29 66)(30 67)(31 68)(32 69)(33 70)(34 71)(35 72)(36 55)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,37,59,31)(2,38,60,32)(3,39,61,33)(4,40,62,34)(5,41,63,35)(6,42,64,36)(7,43,65,19)(8,44,66,20)(9,45,67,21)(10,46,68,22)(11,47,69,23)(12,48,70,24)(13,49,71,25)(14,50,72,26)(15,51,55,27)(16,52,56,28)(17,53,57,29)(18,54,58,30), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,55)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,37,59,31)(2,38,60,32)(3,39,61,33)(4,40,62,34)(5,41,63,35)(6,42,64,36)(7,43,65,19)(8,44,66,20)(9,45,67,21)(10,46,68,22)(11,47,69,23)(12,48,70,24)(13,49,71,25)(14,50,72,26)(15,51,55,27)(16,52,56,28)(17,53,57,29)(18,54,58,30), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,55) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,37,59,31),(2,38,60,32),(3,39,61,33),(4,40,62,34),(5,41,63,35),(6,42,64,36),(7,43,65,19),(8,44,66,20),(9,45,67,21),(10,46,68,22),(11,47,69,23),(12,48,70,24),(13,49,71,25),(14,50,72,26),(15,51,55,27),(16,52,56,28),(17,53,57,29),(18,54,58,30)], [(1,46),(2,47),(3,48),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,65),(29,66),(30,67),(31,68),(32,69),(33,70),(34,71),(35,72),(36,55)]])

D4×C18 is a maximal subgroup of
C36.D4  D4⋊Dic9  C232Dic9  D366C22  C23.23D18  C36.17D4  C232D18  C362D4  Dic9⋊D4  C36⋊D4  D46D18

90 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B6A···6F6G···6N9A···9F12A12B12C12D18A···18R18S···18AP36A···36L
order1222222233446···66···69···91212121218···1818···1836···36
size1111222211221···12···21···122221···12···22···2

90 irreducible representations

dim111111111111222
type+++++
imageC1C2C2C2C3C6C6C6C9C18C18C18D4C3×D4D4×C9
kernelD4×C18C2×C36D4×C9C22×C18C6×D4C2×C12C3×D4C22×C6C2×D4C2×C4D4C23C18C6C2
# reps114222846624122412

Matrix representation of D4×C18 in GL3(𝔽37) generated by

1100
0120
0012
,
100
0114
02136
,
100
010
02136
G:=sub<GL(3,GF(37))| [11,0,0,0,12,0,0,0,12],[1,0,0,0,1,21,0,14,36],[1,0,0,0,1,21,0,0,36] >;

D4×C18 in GAP, Magma, Sage, TeX

D_4\times C_{18}
% in TeX

G:=Group("D4xC18");
// GroupNames label

G:=SmallGroup(144,48);
// by ID

G=gap.SmallGroup(144,48);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-3,313,165]);
// Polycyclic

G:=Group<a,b,c|a^18=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽