direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4×D9, C4⋊1D18, C36⋊C22, D36⋊3C2, C12.5D6, C22⋊2D18, D18⋊2C22, C18.5C23, Dic9⋊1C22, C9⋊2(C2×D4), C3.(S3×D4), (D4×C9)⋊2C2, (C4×D9)⋊1C2, C9⋊D4⋊1C2, (C2×C18)⋊C22, (C2×C6).2D6, (C3×D4).3S3, (C22×D9)⋊2C2, C2.6(C22×D9), C6.23(C22×S3), SmallGroup(144,41)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×D9
G = < a,b,c,d | a4=b2=c9=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 355 in 81 conjugacy classes, 31 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, D4, C23, C9, Dic3, C12, D6, C2×C6, C2×D4, D9, D9, C18, C18, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, Dic9, C36, D18, D18, D18, C2×C18, S3×D4, C4×D9, D36, C9⋊D4, D4×C9, C22×D9, D4×D9
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, C22×S3, D18, S3×D4, C22×D9, D4×D9
Character table of D4×D9
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 6A | 6B | 6C | 9A | 9B | 9C | 12 | 18A | 18B | 18C | 18D | 18E | 18F | 18G | 18H | 18I | 36A | 36B | 36C | |
size | 1 | 1 | 2 | 2 | 9 | 9 | 18 | 18 | 2 | 2 | 18 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | -2 | -2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | -2 | 2 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | 2 | -2 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | -1 | -1 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ16 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | -1 | -1 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ17 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | -1 | -1 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ18 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | -1 | 1 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -ζ98-ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ19 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | -1 | -1 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ20 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | -1 | -1 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ21 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | -1 | 1 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -ζ97-ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | -1 | 1 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D18 |
ρ23 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | -1 | 1 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -ζ95-ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | -1 | 1 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D18 |
ρ25 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | -1 | -1 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | -1 | 1 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D18 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | -2 | -2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 0 | -2ζ97-2ζ92 | -2ζ98-2ζ9 | -2ζ95-2ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 0 | -2ζ95-2ζ94 | -2ζ97-2ζ92 | -2ζ98-2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 0 | -2ζ98-2ζ9 | -2ζ95-2ζ94 | -2ζ97-2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 32 14 23)(2 33 15 24)(3 34 16 25)(4 35 17 26)(5 36 18 27)(6 28 10 19)(7 29 11 20)(8 30 12 21)(9 31 13 22)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 13)(2 12)(3 11)(4 10)(5 18)(6 17)(7 16)(8 15)(9 14)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(27 36)
G:=sub<Sym(36)| (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)>;
G:=Group( (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36) );
G=PermutationGroup([[(1,32,14,23),(2,33,15,24),(3,34,16,25),(4,35,17,26),(5,36,18,27),(6,28,10,19),(7,29,11,20),(8,30,12,21),(9,31,13,22)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,13),(2,12),(3,11),(4,10),(5,18),(6,17),(7,16),(8,15),(9,14),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(27,36)]])
D4×D9 is a maximal subgroup of
D8⋊D9 D72⋊C2 D4⋊6D18 D4⋊8D18 C36⋊D6 D18⋊D6
D4×D9 is a maximal quotient of
C22⋊2Dic18 Dic9⋊4D4 C22⋊3D36 C23.9D18 D18⋊D4 Dic9.D4 C36⋊Q8 D36⋊C4 D18.D4 C4⋊D36 D18⋊Q8 D8⋊D9 D8⋊3D9 D72⋊C2 SD16⋊D9 SD16⋊3D9 Q16⋊D9 D72⋊5C2 C23⋊2D18 C36⋊2D4 Dic9⋊D4 C36⋊D4 C36⋊D6 D18⋊D6
Matrix representation of D4×D9 ►in GL4(𝔽37) generated by
0 | 1 | 0 | 0 |
36 | 0 | 0 | 0 |
0 | 0 | 36 | 0 |
0 | 0 | 0 | 36 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 36 | 0 |
0 | 0 | 0 | 36 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 31 | 20 |
0 | 0 | 17 | 11 |
36 | 0 | 0 | 0 |
0 | 36 | 0 | 0 |
0 | 0 | 17 | 6 |
0 | 0 | 26 | 20 |
G:=sub<GL(4,GF(37))| [0,36,0,0,1,0,0,0,0,0,36,0,0,0,0,36],[0,1,0,0,1,0,0,0,0,0,36,0,0,0,0,36],[1,0,0,0,0,1,0,0,0,0,31,17,0,0,20,11],[36,0,0,0,0,36,0,0,0,0,17,26,0,0,6,20] >;
D4×D9 in GAP, Magma, Sage, TeX
D_4\times D_9
% in TeX
G:=Group("D4xD9");
// GroupNames label
G:=SmallGroup(144,41);
// by ID
G=gap.SmallGroup(144,41);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,116,2404,208,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^9=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export