metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4.D9, C9⋊2SD16, C4.1D18, C18.7D4, C12.1D6, Dic18⋊2C2, C36.1C22, C9⋊C8⋊1C2, (C3×D4).1S3, (D4×C9).1C2, C3.(D4.S3), C2.4(C9⋊D4), C6.14(C3⋊D4), SmallGroup(144,15)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4.D9
G = < a,b,c,d | a4=b2=c9=1, d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >
Character table of D4.D9
class | 1 | 2A | 2B | 3 | 4A | 4B | 6A | 6B | 6C | 8A | 8B | 9A | 9B | 9C | 12 | 18A | 18B | 18C | 18D | 18E | 18F | 18G | 18H | 18I | 36A | 36B | 36C | |
size | 1 | 1 | 4 | 2 | 2 | 36 | 2 | 4 | 4 | 18 | 18 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | 2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ8 | 2 | 2 | -2 | -1 | 2 | 0 | -1 | 1 | 1 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D18 |
ρ9 | 2 | 2 | 2 | -1 | 2 | 0 | -1 | -1 | -1 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 2 | -2 | -1 | 2 | 0 | -1 | 1 | 1 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D18 |
ρ11 | 2 | 2 | 2 | -1 | 2 | 0 | -1 | -1 | -1 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ12 | 2 | 2 | 2 | -1 | 2 | 0 | -1 | -1 | -1 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ13 | 2 | 2 | -2 | -1 | 2 | 0 | -1 | 1 | 1 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D18 |
ρ14 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √-2 | -√-2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ15 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√-2 | √-2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ16 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | -√-3 | -√-3 | √-3 | √-3 | √-3 | -√-3 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | √-3 | √-3 | -√-3 | -√-3 | -√-3 | √-3 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | √-3 | -√-3 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98+ζ9 | ζ97-ζ92 | ζ98-ζ9 | ζ95-ζ94 | -ζ97+ζ92 | -ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | complex lifted from C9⋊D4 |
ρ19 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | -√-3 | √-3 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95-ζ94 | ζ98-ζ9 | -ζ95+ζ94 | ζ97-ζ92 | -ζ98+ζ9 | -ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | complex lifted from C9⋊D4 |
ρ20 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | √-3 | -√-3 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97-ζ92 | -ζ95+ζ94 | -ζ97+ζ92 | ζ98-ζ9 | ζ95-ζ94 | -ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | complex lifted from C9⋊D4 |
ρ21 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | √-3 | -√-3 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95+ζ94 | -ζ98+ζ9 | ζ95-ζ94 | -ζ97+ζ92 | ζ98-ζ9 | ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | complex lifted from C9⋊D4 |
ρ22 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | -√-3 | √-3 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98-ζ9 | -ζ97+ζ92 | -ζ98+ζ9 | -ζ95+ζ94 | ζ97-ζ92 | ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | complex lifted from C9⋊D4 |
ρ23 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | -√-3 | √-3 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97+ζ92 | ζ95-ζ94 | ζ97-ζ92 | -ζ98+ζ9 | -ζ95+ζ94 | ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | complex lifted from C9⋊D4 |
ρ24 | 4 | -4 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ25 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | 0 | -2ζ97-2ζ92 | -2ζ95-2ζ94 | -2ζ98-2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ26 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | 0 | -2ζ95-2ζ94 | -2ζ98-2ζ9 | -2ζ97-2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ27 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | 0 | -2ζ98-2ζ9 | -2ζ97-2ζ92 | -2ζ95-2ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 32 14 23)(2 33 15 24)(3 34 16 25)(4 35 17 26)(5 36 18 27)(6 28 10 19)(7 29 11 20)(8 30 12 21)(9 31 13 22)(37 55 46 64)(38 56 47 65)(39 57 48 66)(40 58 49 67)(41 59 50 68)(42 60 51 69)(43 61 52 70)(44 62 53 71)(45 63 54 72)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 48 14 39)(2 47 15 38)(3 46 16 37)(4 54 17 45)(5 53 18 44)(6 52 10 43)(7 51 11 42)(8 50 12 41)(9 49 13 40)(19 70 28 61)(20 69 29 60)(21 68 30 59)(22 67 31 58)(23 66 32 57)(24 65 33 56)(25 64 34 55)(26 72 35 63)(27 71 36 62)
G:=sub<Sym(72)| (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,48,14,39)(2,47,15,38)(3,46,16,37)(4,54,17,45)(5,53,18,44)(6,52,10,43)(7,51,11,42)(8,50,12,41)(9,49,13,40)(19,70,28,61)(20,69,29,60)(21,68,30,59)(22,67,31,58)(23,66,32,57)(24,65,33,56)(25,64,34,55)(26,72,35,63)(27,71,36,62)>;
G:=Group( (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,48,14,39)(2,47,15,38)(3,46,16,37)(4,54,17,45)(5,53,18,44)(6,52,10,43)(7,51,11,42)(8,50,12,41)(9,49,13,40)(19,70,28,61)(20,69,29,60)(21,68,30,59)(22,67,31,58)(23,66,32,57)(24,65,33,56)(25,64,34,55)(26,72,35,63)(27,71,36,62) );
G=PermutationGroup([[(1,32,14,23),(2,33,15,24),(3,34,16,25),(4,35,17,26),(5,36,18,27),(6,28,10,19),(7,29,11,20),(8,30,12,21),(9,31,13,22),(37,55,46,64),(38,56,47,65),(39,57,48,66),(40,58,49,67),(41,59,50,68),(42,60,51,69),(43,61,52,70),(44,62,53,71),(45,63,54,72)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,48,14,39),(2,47,15,38),(3,46,16,37),(4,54,17,45),(5,53,18,44),(6,52,10,43),(7,51,11,42),(8,50,12,41),(9,49,13,40),(19,70,28,61),(20,69,29,60),(21,68,30,59),(22,67,31,58),(23,66,32,57),(24,65,33,56),(25,64,34,55),(26,72,35,63),(27,71,36,62)]])
D4.D9 is a maximal subgroup of
D8⋊D9 D8⋊3D9 SD16×D9 SD16⋊D9 D36⋊6C22 D4.D18 D4.9D18 D4.D27 D12.D9 C36.D6 Dic18⋊C6 C36.17D6
D4.D9 is a maximal quotient of
C4.Dic18 C18.Q16 D4⋊Dic9 D4.D27 D12.D9 C36.D6 C36.17D6
Matrix representation of D4.D9 ►in GL4(𝔽73) generated by
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 72 | 70 |
0 | 0 | 25 | 1 |
72 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 48 | 72 |
32 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 16 | 0 | 0 |
32 | 0 | 0 | 0 |
0 | 0 | 0 | 55 |
0 | 0 | 69 | 0 |
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,72,25,0,0,70,1],[72,0,0,0,0,1,0,0,0,0,1,48,0,0,0,72],[32,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[0,32,0,0,16,0,0,0,0,0,0,69,0,0,55,0] >;
D4.D9 in GAP, Magma, Sage, TeX
D_4.D_9
% in TeX
G:=Group("D4.D9");
// GroupNames label
G:=SmallGroup(144,15);
// by ID
G=gap.SmallGroup(144,15);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,73,218,116,50,2404,208,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^9=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D4.D9 in TeX
Character table of D4.D9 in TeX