# Extensions 1→N→G→Q→1 with N=C4 and Q=S3×C6

Direct product G=N×Q with N=C4 and Q=S3×C6
dρLabelID
S3×C2×C1248S3xC2xC12144,159

Semidirect products G=N:Q with N=C4 and Q=S3×C6
extensionφ:Q→Aut NdρLabelID
C41(S3×C6) = C3×S3×D4φ: S3×C6/C3×S3C2 ⊆ Aut C4244C4:1(S3xC6)144,162
C42(S3×C6) = C6×D12φ: S3×C6/C3×C6C2 ⊆ Aut C448C4:2(S3xC6)144,160

Non-split extensions G=N.Q with N=C4 and Q=S3×C6
extensionφ:Q→Aut NdρLabelID
C4.1(S3×C6) = C3×D4⋊S3φ: S3×C6/C3×S3C2 ⊆ Aut C4244C4.1(S3xC6)144,80
C4.2(S3×C6) = C3×D4.S3φ: S3×C6/C3×S3C2 ⊆ Aut C4244C4.2(S3xC6)144,81
C4.3(S3×C6) = C3×Q82S3φ: S3×C6/C3×S3C2 ⊆ Aut C4484C4.3(S3xC6)144,82
C4.4(S3×C6) = C3×C3⋊Q16φ: S3×C6/C3×S3C2 ⊆ Aut C4484C4.4(S3xC6)144,83
C4.5(S3×C6) = C3×D42S3φ: S3×C6/C3×S3C2 ⊆ Aut C4244C4.5(S3xC6)144,163
C4.6(S3×C6) = C3×S3×Q8φ: S3×C6/C3×S3C2 ⊆ Aut C4484C4.6(S3xC6)144,164
C4.7(S3×C6) = C3×Q83S3φ: S3×C6/C3×S3C2 ⊆ Aut C4484C4.7(S3xC6)144,165
C4.8(S3×C6) = C3×C24⋊C2φ: S3×C6/C3×C6C2 ⊆ Aut C4482C4.8(S3xC6)144,71
C4.9(S3×C6) = C3×D24φ: S3×C6/C3×C6C2 ⊆ Aut C4482C4.9(S3xC6)144,72
C4.10(S3×C6) = C3×Dic12φ: S3×C6/C3×C6C2 ⊆ Aut C4482C4.10(S3xC6)144,73
C4.11(S3×C6) = C6×Dic6φ: S3×C6/C3×C6C2 ⊆ Aut C448C4.11(S3xC6)144,158
C4.12(S3×C6) = S3×C24central extension (φ=1)482C4.12(S3xC6)144,69
C4.13(S3×C6) = C3×C8⋊S3central extension (φ=1)482C4.13(S3xC6)144,70
C4.14(S3×C6) = C6×C3⋊C8central extension (φ=1)48C4.14(S3xC6)144,74
C4.15(S3×C6) = C3×C4.Dic3central extension (φ=1)242C4.15(S3xC6)144,75
C4.16(S3×C6) = C3×C4○D12central extension (φ=1)242C4.16(S3xC6)144,161

׿
×
𝔽