Copied to
clipboard

G = C3×C3⋊Q16order 144 = 24·32

Direct product of C3 and C3⋊Q16

direct product, metabelian, supersoluble, monomial

Aliases: C3×C3⋊Q16, C326Q16, C12.36D6, Dic6.2C6, C3⋊C8.C6, C4.4(S3×C6), C32(C3×Q16), C12.4(C2×C6), C6.10(C3×D4), (C3×C6).31D4, (C3×Q8).5C6, Q8.3(C3×S3), (C3×Q8).10S3, C6.32(C3⋊D4), (C3×Dic6).3C2, (Q8×C32).1C2, (C3×C12).11C22, (C3×C3⋊C8).2C2, C2.7(C3×C3⋊D4), SmallGroup(144,83)

Series: Derived Chief Lower central Upper central

C1C12 — C3×C3⋊Q16
C1C3C6C12C3×C12C3×Dic6 — C3×C3⋊Q16
C3C6C12 — C3×C3⋊Q16
C1C6C12C3×Q8

Generators and relations for C3×C3⋊Q16
 G = < a,b,c,d | a3=b3=c8=1, d2=c4, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=c-1 >

2C3
2C4
6C4
2C6
3Q8
3C8
2C12
2C12
2C12
2C12
2C12
2Dic3
6C12
3Q16
2C3×Q8
3C24
3C3×Q8
2C3×C12
2C3×Dic3
3C3×Q16

Smallest permutation representation of C3×C3⋊Q16
On 48 points
Generators in S48
(1 11 46)(2 12 47)(3 13 48)(4 14 41)(5 15 42)(6 16 43)(7 9 44)(8 10 45)(17 34 28)(18 35 29)(19 36 30)(20 37 31)(21 38 32)(22 39 25)(23 40 26)(24 33 27)
(1 11 46)(2 47 12)(3 13 48)(4 41 14)(5 15 42)(6 43 16)(7 9 44)(8 45 10)(17 34 28)(18 29 35)(19 36 30)(20 31 37)(21 38 32)(22 25 39)(23 40 26)(24 27 33)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23 5 19)(2 22 6 18)(3 21 7 17)(4 20 8 24)(9 34 13 38)(10 33 14 37)(11 40 15 36)(12 39 16 35)(25 43 29 47)(26 42 30 46)(27 41 31 45)(28 48 32 44)

G:=sub<Sym(48)| (1,11,46)(2,12,47)(3,13,48)(4,14,41)(5,15,42)(6,16,43)(7,9,44)(8,10,45)(17,34,28)(18,35,29)(19,36,30)(20,37,31)(21,38,32)(22,39,25)(23,40,26)(24,33,27), (1,11,46)(2,47,12)(3,13,48)(4,41,14)(5,15,42)(6,43,16)(7,9,44)(8,45,10)(17,34,28)(18,29,35)(19,36,30)(20,31,37)(21,38,32)(22,25,39)(23,40,26)(24,27,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,34,13,38)(10,33,14,37)(11,40,15,36)(12,39,16,35)(25,43,29,47)(26,42,30,46)(27,41,31,45)(28,48,32,44)>;

G:=Group( (1,11,46)(2,12,47)(3,13,48)(4,14,41)(5,15,42)(6,16,43)(7,9,44)(8,10,45)(17,34,28)(18,35,29)(19,36,30)(20,37,31)(21,38,32)(22,39,25)(23,40,26)(24,33,27), (1,11,46)(2,47,12)(3,13,48)(4,41,14)(5,15,42)(6,43,16)(7,9,44)(8,45,10)(17,34,28)(18,29,35)(19,36,30)(20,31,37)(21,38,32)(22,25,39)(23,40,26)(24,27,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,34,13,38)(10,33,14,37)(11,40,15,36)(12,39,16,35)(25,43,29,47)(26,42,30,46)(27,41,31,45)(28,48,32,44) );

G=PermutationGroup([[(1,11,46),(2,12,47),(3,13,48),(4,14,41),(5,15,42),(6,16,43),(7,9,44),(8,10,45),(17,34,28),(18,35,29),(19,36,30),(20,37,31),(21,38,32),(22,39,25),(23,40,26),(24,33,27)], [(1,11,46),(2,47,12),(3,13,48),(4,41,14),(5,15,42),(6,43,16),(7,9,44),(8,45,10),(17,34,28),(18,29,35),(19,36,30),(20,31,37),(21,38,32),(22,25,39),(23,40,26),(24,27,33)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23,5,19),(2,22,6,18),(3,21,7,17),(4,20,8,24),(9,34,13,38),(10,33,14,37),(11,40,15,36),(12,39,16,35),(25,43,29,47),(26,42,30,46),(27,41,31,45),(28,48,32,44)]])

C3×C3⋊Q16 is a maximal subgroup of
D12.11D6  Dic6.9D6  Dic6.10D6  Dic6.22D6  D12.13D6  D12.14D6  D12.15D6  C3×S3×Q16  He36Q16  Dic18.C6  He37Q16  C32.CSU2(𝔽3)  C32⋊CSU2(𝔽3)  C322CSU2(𝔽3)
C3×C3⋊Q16 is a maximal quotient of
He36Q16  Dic18.C6

36 conjugacy classes

class 1  2 3A3B3C3D3E4A4B4C6A6B6C6D6E8A8B12A12B12C···12M12N12O24A24B24C24D
order12333334446666688121212···12121224242424
size111122224121122266224···412126666

36 irreducible representations

dim11111111222222222244
type+++++++--
imageC1C2C2C2C3C6C6C6S3D4D6Q16C3×S3C3⋊D4C3×D4S3×C6C3×Q16C3×C3⋊D4C3⋊Q16C3×C3⋊Q16
kernelC3×C3⋊Q16C3×C3⋊C8C3×Dic6Q8×C32C3⋊Q16C3⋊C8Dic6C3×Q8C3×Q8C3×C6C12C32Q8C6C6C4C3C2C3C1
# reps11112222111222224412

Matrix representation of C3×C3⋊Q16 in GL4(𝔽7) generated by

2000
0200
0020
0002
,
4446
1563
5561
3454
,
5005
5410
1200
0105
,
2125
2022
6415
6544
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[4,1,5,3,4,5,5,4,4,6,6,5,6,3,1,4],[5,5,1,0,0,4,2,1,0,1,0,0,5,0,0,5],[2,2,6,6,1,0,4,5,2,2,1,4,5,2,5,4] >;

C3×C3⋊Q16 in GAP, Magma, Sage, TeX

C_3\times C_3\rtimes Q_{16}
% in TeX

G:=Group("C3xC3:Q16");
// GroupNames label

G:=SmallGroup(144,83);
// by ID

G=gap.SmallGroup(144,83);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-3,144,169,151,867,441,69,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=1,d^2=c^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C3×C3⋊Q16 in TeX

׿
×
𝔽