Copied to
clipboard

G = C6×D12order 144 = 24·32

Direct product of C6 and D12

direct product, metabelian, supersoluble, monomial

Aliases: C6×D12, C128D6, C62.28C22, C42(S3×C6), C61(C3×D4), (C3×C6)⋊4D4, C31(C6×D4), (C2×C12)⋊6S3, C122(C2×C6), (C6×C12)⋊7C2, (C2×C12)⋊3C6, D61(C2×C6), C328(C2×D4), (C2×C6).48D6, (C22×S3)⋊2C6, (S3×C6)⋊7C22, (C3×C12)⋊7C22, C6.3(C22×C6), (C3×C6).21C23, C22.10(S3×C6), C6.42(C22×S3), (S3×C2×C6)⋊4C2, C2.4(S3×C2×C6), (C2×C4)⋊2(C3×S3), (C2×C6).13(C2×C6), SmallGroup(144,160)

Series: Derived Chief Lower central Upper central

C1C6 — C6×D12
C1C3C6C3×C6S3×C6S3×C2×C6 — C6×D12
C3C6 — C6×D12
C1C2×C6C2×C12

Generators and relations for C6×D12
 G = < a,b,c | a6=b12=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 264 in 116 conjugacy classes, 54 normal (18 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C32, C12, C12, D6, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3×C6, C3×C6, D12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C3×C12, S3×C6, S3×C6, C62, C2×D12, C6×D4, C3×D12, C6×C12, S3×C2×C6, C6×D12
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, D12, C3×D4, C22×S3, C22×C6, S3×C6, C2×D12, C6×D4, C3×D12, S3×C2×C6, C6×D12

Smallest permutation representation of C6×D12
On 48 points
Generators in S48
(1 39 5 43 9 47)(2 40 6 44 10 48)(3 41 7 45 11 37)(4 42 8 46 12 38)(13 31 21 27 17 35)(14 32 22 28 18 36)(15 33 23 29 19 25)(16 34 24 30 20 26)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(11 13)(12 24)(25 43)(26 42)(27 41)(28 40)(29 39)(30 38)(31 37)(32 48)(33 47)(34 46)(35 45)(36 44)

G:=sub<Sym(48)| (1,39,5,43,9,47)(2,40,6,44,10,48)(3,41,7,45,11,37)(4,42,8,46,12,38)(13,31,21,27,17,35)(14,32,22,28,18,36)(15,33,23,29,19,25)(16,34,24,30,20,26), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(12,24)(25,43)(26,42)(27,41)(28,40)(29,39)(30,38)(31,37)(32,48)(33,47)(34,46)(35,45)(36,44)>;

G:=Group( (1,39,5,43,9,47)(2,40,6,44,10,48)(3,41,7,45,11,37)(4,42,8,46,12,38)(13,31,21,27,17,35)(14,32,22,28,18,36)(15,33,23,29,19,25)(16,34,24,30,20,26), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(12,24)(25,43)(26,42)(27,41)(28,40)(29,39)(30,38)(31,37)(32,48)(33,47)(34,46)(35,45)(36,44) );

G=PermutationGroup([[(1,39,5,43,9,47),(2,40,6,44,10,48),(3,41,7,45,11,37),(4,42,8,46,12,38),(13,31,21,27,17,35),(14,32,22,28,18,36),(15,33,23,29,19,25),(16,34,24,30,20,26)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(11,13),(12,24),(25,43),(26,42),(27,41),(28,40),(29,39),(30,38),(31,37),(32,48),(33,47),(34,46),(35,45),(36,44)]])

C6×D12 is a maximal subgroup of
C12.D12  D123Dic3  C6.16D24  D1220D6  D12.28D6  C12.27D12  C62.33C23  C62.54C23  C62.55C23  Dic3⋊D12  D12⋊Dic3  D62D12  C12⋊D12  C62.84C23  C122D12  D64D12  D1224D6  S3×C6×D4

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B6A···6F6G···6O6P···6W12A···12P
order1222222233333446···66···66···612···12
size1111666611222221···12···26···62···2

54 irreducible representations

dim111111112222222222
type+++++++++
imageC1C2C2C2C3C6C6C6S3D4D6D6C3×S3D12C3×D4S3×C6S3×C6C3×D12
kernelC6×D12C3×D12C6×C12S3×C2×C6C2×D12D12C2×C12C22×S3C2×C12C3×C6C12C2×C6C2×C4C6C6C4C22C2
# reps141228241221244428

Matrix representation of C6×D12 in GL3(𝔽13) generated by

400
030
003
,
1200
060
0011
,
100
0011
060
G:=sub<GL(3,GF(13))| [4,0,0,0,3,0,0,0,3],[12,0,0,0,6,0,0,0,11],[1,0,0,0,0,6,0,11,0] >;

C6×D12 in GAP, Magma, Sage, TeX

C_6\times D_{12}
% in TeX

G:=Group("C6xD12");
// GroupNames label

G:=SmallGroup(144,160);
// by ID

G=gap.SmallGroup(144,160);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-3,506,122,3461]);
// Polycyclic

G:=Group<a,b,c|a^6=b^12=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽