Extensions 1→N→G→Q→1 with N=C24 and Q=S3

Direct product G=NxQ with N=C24 and Q=S3
dρLabelID
S3xC24482S3xC24144,69

Semidirect products G=N:Q with N=C24 and Q=S3
extensionφ:Q→Aut NdρLabelID
C24:1S3 = C32:5D8φ: S3/C3C2 ⊆ Aut C2472C24:1S3144,88
C24:2S3 = C24:2S3φ: S3/C3C2 ⊆ Aut C2472C24:2S3144,87
C24:3S3 = C3xD24φ: S3/C3C2 ⊆ Aut C24482C24:3S3144,72
C24:4S3 = C8xC3:S3φ: S3/C3C2 ⊆ Aut C2472C24:4S3144,85
C24:5S3 = C24:S3φ: S3/C3C2 ⊆ Aut C2472C24:5S3144,86
C24:6S3 = C3xC24:C2φ: S3/C3C2 ⊆ Aut C24482C24:6S3144,71
C24:7S3 = C3xC8:S3φ: S3/C3C2 ⊆ Aut C24482C24:7S3144,70

Non-split extensions G=N.Q with N=C24 and Q=S3
extensionφ:Q→Aut NdρLabelID
C24.1S3 = Dic36φ: S3/C3C2 ⊆ Aut C241442-C24.1S3144,4
C24.2S3 = D72φ: S3/C3C2 ⊆ Aut C24722+C24.2S3144,8
C24.3S3 = C32:5Q16φ: S3/C3C2 ⊆ Aut C24144C24.3S3144,89
C24.4S3 = C72:C2φ: S3/C3C2 ⊆ Aut C24722C24.4S3144,7
C24.5S3 = C3xDic12φ: S3/C3C2 ⊆ Aut C24482C24.5S3144,73
C24.6S3 = C9:C16φ: S3/C3C2 ⊆ Aut C241442C24.6S3144,1
C24.7S3 = C8xD9φ: S3/C3C2 ⊆ Aut C24722C24.7S3144,5
C24.8S3 = C8:D9φ: S3/C3C2 ⊆ Aut C24722C24.8S3144,6
C24.9S3 = C24.S3φ: S3/C3C2 ⊆ Aut C24144C24.9S3144,29
C24.10S3 = C3xC3:C16central extension (φ=1)482C24.10S3144,28

׿
x
:
Z
F
o
wr
Q
<