Extensions 1→N→G→Q→1 with N=C24 and Q=S3

Direct product G=N×Q with N=C24 and Q=S3
dρLabelID
S3×C24482S3xC24144,69

Semidirect products G=N:Q with N=C24 and Q=S3
extensionφ:Q→Aut NdρLabelID
C241S3 = C325D8φ: S3/C3C2 ⊆ Aut C2472C24:1S3144,88
C242S3 = C242S3φ: S3/C3C2 ⊆ Aut C2472C24:2S3144,87
C243S3 = C3×D24φ: S3/C3C2 ⊆ Aut C24482C24:3S3144,72
C244S3 = C8×C3⋊S3φ: S3/C3C2 ⊆ Aut C2472C24:4S3144,85
C245S3 = C24⋊S3φ: S3/C3C2 ⊆ Aut C2472C24:5S3144,86
C246S3 = C3×C24⋊C2φ: S3/C3C2 ⊆ Aut C24482C24:6S3144,71
C247S3 = C3×C8⋊S3φ: S3/C3C2 ⊆ Aut C24482C24:7S3144,70

Non-split extensions G=N.Q with N=C24 and Q=S3
extensionφ:Q→Aut NdρLabelID
C24.1S3 = Dic36φ: S3/C3C2 ⊆ Aut C241442-C24.1S3144,4
C24.2S3 = D72φ: S3/C3C2 ⊆ Aut C24722+C24.2S3144,8
C24.3S3 = C325Q16φ: S3/C3C2 ⊆ Aut C24144C24.3S3144,89
C24.4S3 = C72⋊C2φ: S3/C3C2 ⊆ Aut C24722C24.4S3144,7
C24.5S3 = C3×Dic12φ: S3/C3C2 ⊆ Aut C24482C24.5S3144,73
C24.6S3 = C9⋊C16φ: S3/C3C2 ⊆ Aut C241442C24.6S3144,1
C24.7S3 = C8×D9φ: S3/C3C2 ⊆ Aut C24722C24.7S3144,5
C24.8S3 = C8⋊D9φ: S3/C3C2 ⊆ Aut C24722C24.8S3144,6
C24.9S3 = C24.S3φ: S3/C3C2 ⊆ Aut C24144C24.9S3144,29
C24.10S3 = C3×C3⋊C16central extension (φ=1)482C24.10S3144,28

׿
×
𝔽