metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C8⋊3D9, C72⋊4C2, D18.C4, C24.8S3, Dic9.C4, C9⋊1M4(2), C4.13D18, C12.51D6, C36.13C22, C9⋊C8⋊4C2, C6.6(C4×S3), C2.3(C4×D9), C3.(C8⋊S3), C18.2(C2×C4), (C4×D9).2C2, SmallGroup(144,6)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C8⋊D9
G = < a,b,c | a8=b9=c2=1, ab=ba, cac=a5, cbc=b-1 >
(1 68 32 50 14 59 23 41)(2 69 33 51 15 60 24 42)(3 70 34 52 16 61 25 43)(4 71 35 53 17 62 26 44)(5 72 36 54 18 63 27 45)(6 64 28 46 10 55 19 37)(7 65 29 47 11 56 20 38)(8 66 30 48 12 57 21 39)(9 67 31 49 13 58 22 40)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 26)(20 25)(21 24)(22 23)(28 35)(29 34)(30 33)(31 32)(37 53)(38 52)(39 51)(40 50)(41 49)(42 48)(43 47)(44 46)(45 54)(55 71)(56 70)(57 69)(58 68)(59 67)(60 66)(61 65)(62 64)(63 72)
G:=sub<Sym(72)| (1,68,32,50,14,59,23,41)(2,69,33,51,15,60,24,42)(3,70,34,52,16,61,25,43)(4,71,35,53,17,62,26,44)(5,72,36,54,18,63,27,45)(6,64,28,46,10,55,19,37)(7,65,29,47,11,56,20,38)(8,66,30,48,12,57,21,39)(9,67,31,49,13,58,22,40), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72)>;
G:=Group( (1,68,32,50,14,59,23,41)(2,69,33,51,15,60,24,42)(3,70,34,52,16,61,25,43)(4,71,35,53,17,62,26,44)(5,72,36,54,18,63,27,45)(6,64,28,46,10,55,19,37)(7,65,29,47,11,56,20,38)(8,66,30,48,12,57,21,39)(9,67,31,49,13,58,22,40), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72) );
G=PermutationGroup([[(1,68,32,50,14,59,23,41),(2,69,33,51,15,60,24,42),(3,70,34,52,16,61,25,43),(4,71,35,53,17,62,26,44),(5,72,36,54,18,63,27,45),(6,64,28,46,10,55,19,37),(7,65,29,47,11,56,20,38),(8,66,30,48,12,57,21,39),(9,67,31,49,13,58,22,40)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,26),(20,25),(21,24),(22,23),(28,35),(29,34),(30,33),(31,32),(37,53),(38,52),(39,51),(40,50),(41,49),(42,48),(43,47),(44,46),(45,54),(55,71),(56,70),(57,69),(58,68),(59,67),(60,66),(61,65),(62,64),(63,72)]])
C8⋊D9 is a maximal subgroup of
D36.2C4 M4(2)×D9 D36.C4 D8⋊D9 D72⋊C2 SD16⋊D9 Q16⋊D9 C8⋊D27 C36.39D6 C36.40D6 C72⋊C6 C72⋊S3
C8⋊D9 is a maximal quotient of
Dic9⋊C8 C72⋊C4 D18⋊C8 C8⋊D27 C36.39D6 C36.40D6 C72⋊S3
42 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 6 | 8A | 8B | 8C | 8D | 9A | 9B | 9C | 12A | 12B | 18A | 18B | 18C | 24A | 24B | 24C | 24D | 36A | ··· | 36F | 72A | ··· | 72L |
order | 1 | 2 | 2 | 3 | 4 | 4 | 4 | 6 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 18 | 2 | 1 | 1 | 18 | 2 | 2 | 2 | 18 | 18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | S3 | D6 | M4(2) | D9 | C4×S3 | D18 | C8⋊S3 | C4×D9 | C8⋊D9 |
kernel | C8⋊D9 | C9⋊C8 | C72 | C4×D9 | Dic9 | D18 | C24 | C12 | C9 | C8 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 3 | 4 | 6 | 12 |
Matrix representation of C8⋊D9 ►in GL2(𝔽73) generated by
8 | 16 |
57 | 65 |
28 | 70 |
3 | 31 |
28 | 70 |
42 | 45 |
G:=sub<GL(2,GF(73))| [8,57,16,65],[28,3,70,31],[28,42,70,45] >;
C8⋊D9 in GAP, Magma, Sage, TeX
C_8\rtimes D_9
% in TeX
G:=Group("C8:D9");
// GroupNames label
G:=SmallGroup(144,6);
// by ID
G=gap.SmallGroup(144,6);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,121,31,50,2404,208,3461]);
// Polycyclic
G:=Group<a,b,c|a^8=b^9=c^2=1,a*b=b*a,c*a*c=a^5,c*b*c=b^-1>;
// generators/relations
Export