direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C3×C3⋊C16, C3⋊C48, C6.C24, C24.5C6, C32⋊3C16, C12.2C12, C24.10S3, C12.10Dic3, C6.4(C3⋊C8), C8.2(C3×S3), (C3×C6).3C8, (C3×C12).6C4, (C3×C24).4C2, C4.2(C3×Dic3), C2.(C3×C3⋊C8), SmallGroup(144,28)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — C3×C3⋊C16 |
Generators and relations for C3×C3⋊C16
G = < a,b,c | a3=b3=c16=1, ab=ba, ac=ca, cbc-1=b-1 >
(1 21 43)(2 22 44)(3 23 45)(4 24 46)(5 25 47)(6 26 48)(7 27 33)(8 28 34)(9 29 35)(10 30 36)(11 31 37)(12 32 38)(13 17 39)(14 18 40)(15 19 41)(16 20 42)
(1 21 43)(2 44 22)(3 23 45)(4 46 24)(5 25 47)(6 48 26)(7 27 33)(8 34 28)(9 29 35)(10 36 30)(11 31 37)(12 38 32)(13 17 39)(14 40 18)(15 19 41)(16 42 20)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,21,43)(2,22,44)(3,23,45)(4,24,46)(5,25,47)(6,26,48)(7,27,33)(8,28,34)(9,29,35)(10,30,36)(11,31,37)(12,32,38)(13,17,39)(14,18,40)(15,19,41)(16,20,42), (1,21,43)(2,44,22)(3,23,45)(4,46,24)(5,25,47)(6,48,26)(7,27,33)(8,34,28)(9,29,35)(10,36,30)(11,31,37)(12,38,32)(13,17,39)(14,40,18)(15,19,41)(16,42,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;
G:=Group( (1,21,43)(2,22,44)(3,23,45)(4,24,46)(5,25,47)(6,26,48)(7,27,33)(8,28,34)(9,29,35)(10,30,36)(11,31,37)(12,32,38)(13,17,39)(14,18,40)(15,19,41)(16,20,42), (1,21,43)(2,44,22)(3,23,45)(4,46,24)(5,25,47)(6,48,26)(7,27,33)(8,34,28)(9,29,35)(10,36,30)(11,31,37)(12,38,32)(13,17,39)(14,40,18)(15,19,41)(16,42,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,21,43),(2,22,44),(3,23,45),(4,24,46),(5,25,47),(6,26,48),(7,27,33),(8,28,34),(9,29,35),(10,30,36),(11,31,37),(12,32,38),(13,17,39),(14,18,40),(15,19,41),(16,20,42)], [(1,21,43),(2,44,22),(3,23,45),(4,46,24),(5,25,47),(6,48,26),(7,27,33),(8,34,28),(9,29,35),(10,36,30),(11,31,37),(12,38,32),(13,17,39),(14,40,18),(15,19,41),(16,42,20)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])
C3×C3⋊C16 is a maximal subgroup of
C24.60D6 C24.61D6 C24.62D6 C3⋊D48 C32⋊3SD32 C24.49D6 C32⋊3Q32 S3×C48 He3⋊3C16 C9⋊C48 He3⋊4C16
C3×C3⋊C16 is a maximal quotient of
He3⋊3C16 C9⋊C48
72 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 16A | ··· | 16H | 24A | ··· | 24H | 24I | ··· | 24T | 48A | ··· | 48P |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 16 | ··· | 16 | 24 | ··· | 24 | 24 | ··· | 24 | 48 | ··· | 48 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | - | ||||||||||||||
image | C1 | C2 | C3 | C4 | C6 | C8 | C12 | C16 | C24 | C48 | S3 | Dic3 | C3×S3 | C3⋊C8 | C3×Dic3 | C3⋊C16 | C3×C3⋊C8 | C3×C3⋊C16 |
kernel | C3×C3⋊C16 | C3×C24 | C3⋊C16 | C3×C12 | C24 | C3×C6 | C12 | C32 | C6 | C3 | C24 | C12 | C8 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 16 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 |
Matrix representation of C3×C3⋊C16 ►in GL3(𝔽97) generated by
35 | 0 | 0 |
0 | 61 | 0 |
0 | 0 | 61 |
1 | 0 | 0 |
0 | 61 | 0 |
0 | 0 | 35 |
85 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
G:=sub<GL(3,GF(97))| [35,0,0,0,61,0,0,0,61],[1,0,0,0,61,0,0,0,35],[85,0,0,0,0,1,0,1,0] >;
C3×C3⋊C16 in GAP, Magma, Sage, TeX
C_3\times C_3\rtimes C_{16}
% in TeX
G:=Group("C3xC3:C16");
// GroupNames label
G:=SmallGroup(144,28);
// by ID
G=gap.SmallGroup(144,28);
# by ID
G:=PCGroup([6,-2,-3,-2,-2,-2,-3,36,50,69,3461]);
// Polycyclic
G:=Group<a,b,c|a^3=b^3=c^16=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export