# Extensions 1→N→G→Q→1 with N=Q8×C32 and Q=C2

Direct product G=N×Q with N=Q8×C32 and Q=C2
dρLabelID
Q8×C3×C6144Q8xC3xC6144,180

Semidirect products G=N:Q with N=Q8×C32 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C32)⋊1C2 = C3×Q82S3φ: C2/C1C2 ⊆ Out Q8×C32484(Q8xC3^2):1C2144,82
(Q8×C32)⋊2C2 = C3211SD16φ: C2/C1C2 ⊆ Out Q8×C3272(Q8xC3^2):2C2144,98
(Q8×C32)⋊3C2 = C3×S3×Q8φ: C2/C1C2 ⊆ Out Q8×C32484(Q8xC3^2):3C2144,164
(Q8×C32)⋊4C2 = C3×Q83S3φ: C2/C1C2 ⊆ Out Q8×C32484(Q8xC3^2):4C2144,165
(Q8×C32)⋊5C2 = Q8×C3⋊S3φ: C2/C1C2 ⊆ Out Q8×C3272(Q8xC3^2):5C2144,174
(Q8×C32)⋊6C2 = C12.26D6φ: C2/C1C2 ⊆ Out Q8×C3272(Q8xC3^2):6C2144,175
(Q8×C32)⋊7C2 = C32×SD16φ: C2/C1C2 ⊆ Out Q8×C3272(Q8xC3^2):7C2144,107
(Q8×C32)⋊8C2 = C32×C4○D4φ: trivial image72(Q8xC3^2):8C2144,181

Non-split extensions G=N.Q with N=Q8×C32 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C32).1C2 = C3×C3⋊Q16φ: C2/C1C2 ⊆ Out Q8×C32484(Q8xC3^2).1C2144,83
(Q8×C32).2C2 = C327Q16φ: C2/C1C2 ⊆ Out Q8×C32144(Q8xC3^2).2C2144,99
(Q8×C32).3C2 = C32×Q16φ: C2/C1C2 ⊆ Out Q8×C32144(Q8xC3^2).3C2144,108

׿
×
𝔽