direct product, metabelian, supersoluble, monomial, rational
Aliases: Q8×C3⋊S3, C12.25D6, C3⋊3(S3×Q8), (C3×Q8)⋊4S3, C32⋊8(C2×Q8), (Q8×C32)⋊5C2, C32⋊4Q8⋊7C2, C6.36(C22×S3), (C3×C6).35C23, (C3×C12).25C22, C3⋊Dic3.19C22, C4.6(C2×C3⋊S3), (C4×C3⋊S3).2C2, C2.8(C22×C3⋊S3), (C2×C3⋊S3).22C22, SmallGroup(144,174)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — C2×C3⋊S3 — C4×C3⋊S3 — Q8×C3⋊S3 |
Generators and relations for Q8×C3⋊S3
G = < a,b,c,d,e | a4=c3=d3=e2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 322 in 114 conjugacy classes, 49 normal (8 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C2×C4, Q8, Q8, C32, Dic3, C12, D6, C2×Q8, C3⋊S3, C3×C6, Dic6, C4×S3, C3×Q8, C3⋊Dic3, C3×C12, C2×C3⋊S3, S3×Q8, C32⋊4Q8, C4×C3⋊S3, Q8×C32, Q8×C3⋊S3
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C3⋊S3, C22×S3, C2×C3⋊S3, S3×Q8, C22×C3⋊S3, Q8×C3⋊S3
Character table of Q8×C3⋊S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 12K | 12L | |
size | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 18 | 18 | 18 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | 1 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | 1 | -1 | 1 | -2 | 1 | 1 | -1 | -1 | 2 | 1 | -2 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | 1 | 1 | -1 | 2 | -1 | -1 | 1 | 1 | -2 | 1 | -2 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | 1 | -2 | 1 | -1 | -1 | -1 | 2 | 1 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | 1 | -1 | 1 | 1 | -2 | 1 | 2 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | 1 | 1 | 2 | -2 | 1 | 1 | 1 | -1 | -1 | -1 | -2 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | 1 | 1 | -2 | 1 | 1 | 1 | 1 | -2 | -1 | 2 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | orthogonal lifted from S3 |
ρ18 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ19 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ20 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ21 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | 1 | -2 | -1 | 1 | 1 | 1 | -2 | -1 | 2 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ22 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | 1 | 1 | -1 | -1 | 2 | -1 | -2 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ23 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | 1 | 1 | -2 | 2 | -1 | -1 | -1 | 1 | 1 | 1 | -2 | 1 | orthogonal lifted from D6 |
ρ24 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | 2 | 1 | 1 | 1 | 1 | -2 | 1 | -2 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ25 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ26 | 2 | -2 | 2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ27 | 4 | -4 | 0 | 0 | -2 | -2 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
ρ28 | 4 | -4 | 0 | 0 | -2 | 4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
ρ29 | 4 | -4 | 0 | 0 | -2 | -2 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
ρ30 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 18 3 20)(2 17 4 19)(5 41 7 43)(6 44 8 42)(9 51 11 49)(10 50 12 52)(13 68 15 66)(14 67 16 65)(21 54 23 56)(22 53 24 55)(25 58 27 60)(26 57 28 59)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 62 39 64)(38 61 40 63)
(1 21 29)(2 22 30)(3 23 31)(4 24 32)(5 35 51)(6 36 52)(7 33 49)(8 34 50)(9 43 69)(10 44 70)(11 41 71)(12 42 72)(13 38 60)(14 39 57)(15 40 58)(16 37 59)(17 53 45)(18 54 46)(19 55 47)(20 56 48)(25 68 61)(26 65 62)(27 66 63)(28 67 64)
(1 7 40)(2 8 37)(3 5 38)(4 6 39)(9 66 46)(10 67 47)(11 68 48)(12 65 45)(13 31 51)(14 32 52)(15 29 49)(16 30 50)(17 42 62)(18 43 63)(19 44 64)(20 41 61)(21 33 58)(22 34 59)(23 35 60)(24 36 57)(25 56 71)(26 53 72)(27 54 69)(28 55 70)
(1 3)(2 4)(5 40)(6 37)(7 38)(8 39)(9 25)(10 26)(11 27)(12 28)(13 33)(14 34)(15 35)(16 36)(17 19)(18 20)(21 31)(22 32)(23 29)(24 30)(41 63)(42 64)(43 61)(44 62)(45 55)(46 56)(47 53)(48 54)(49 60)(50 57)(51 58)(52 59)(65 70)(66 71)(67 72)(68 69)
G:=sub<Sym(72)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,43,69)(10,44,70)(11,41,71)(12,42,72)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,53,45)(18,54,46)(19,55,47)(20,56,48)(25,68,61)(26,65,62)(27,66,63)(28,67,64), (1,7,40)(2,8,37)(3,5,38)(4,6,39)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,31,51)(14,32,52)(15,29,49)(16,30,50)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,33,58)(22,34,59)(23,35,60)(24,36,57)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,25)(10,26)(11,27)(12,28)(13,33)(14,34)(15,35)(16,36)(17,19)(18,20)(21,31)(22,32)(23,29)(24,30)(41,63)(42,64)(43,61)(44,62)(45,55)(46,56)(47,53)(48,54)(49,60)(50,57)(51,58)(52,59)(65,70)(66,71)(67,72)(68,69)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,43,69)(10,44,70)(11,41,71)(12,42,72)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,53,45)(18,54,46)(19,55,47)(20,56,48)(25,68,61)(26,65,62)(27,66,63)(28,67,64), (1,7,40)(2,8,37)(3,5,38)(4,6,39)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,31,51)(14,32,52)(15,29,49)(16,30,50)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,33,58)(22,34,59)(23,35,60)(24,36,57)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,25)(10,26)(11,27)(12,28)(13,33)(14,34)(15,35)(16,36)(17,19)(18,20)(21,31)(22,32)(23,29)(24,30)(41,63)(42,64)(43,61)(44,62)(45,55)(46,56)(47,53)(48,54)(49,60)(50,57)(51,58)(52,59)(65,70)(66,71)(67,72)(68,69) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,18,3,20),(2,17,4,19),(5,41,7,43),(6,44,8,42),(9,51,11,49),(10,50,12,52),(13,68,15,66),(14,67,16,65),(21,54,23,56),(22,53,24,55),(25,58,27,60),(26,57,28,59),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,62,39,64),(38,61,40,63)], [(1,21,29),(2,22,30),(3,23,31),(4,24,32),(5,35,51),(6,36,52),(7,33,49),(8,34,50),(9,43,69),(10,44,70),(11,41,71),(12,42,72),(13,38,60),(14,39,57),(15,40,58),(16,37,59),(17,53,45),(18,54,46),(19,55,47),(20,56,48),(25,68,61),(26,65,62),(27,66,63),(28,67,64)], [(1,7,40),(2,8,37),(3,5,38),(4,6,39),(9,66,46),(10,67,47),(11,68,48),(12,65,45),(13,31,51),(14,32,52),(15,29,49),(16,30,50),(17,42,62),(18,43,63),(19,44,64),(20,41,61),(21,33,58),(22,34,59),(23,35,60),(24,36,57),(25,56,71),(26,53,72),(27,54,69),(28,55,70)], [(1,3),(2,4),(5,40),(6,37),(7,38),(8,39),(9,25),(10,26),(11,27),(12,28),(13,33),(14,34),(15,35),(16,36),(17,19),(18,20),(21,31),(22,32),(23,29),(24,30),(41,63),(42,64),(43,61),(44,62),(45,55),(46,56),(47,53),(48,54),(49,60),(50,57),(51,58),(52,59),(65,70),(66,71),(67,72),(68,69)]])
Q8×C3⋊S3 is a maximal subgroup of
C3⋊S3.5Q16 D12.9D6 Dic6.9D6 D12.15D6 C24.32D6 C24.35D6 D12.25D6 S32×Q8 D12⋊15D6 C32⋊72- 1+4 C32⋊92- 1+4 Q8⋊He3⋊C2 C32⋊9(S3×Q8)
Q8×C3⋊S3 is a maximal quotient of
C62.231C23 C12⋊2Dic6 C62.233C23 C62.240C23 C12.31D12 C62.259C23 C62.261C23 C32⋊9(S3×Q8)
Matrix representation of Q8×C3⋊S3 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 11 |
0 | 0 | 0 | 0 | 1 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 8 |
0 | 0 | 0 | 0 | 10 | 7 |
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,11,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,6,10,0,0,0,0,8,7],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;
Q8×C3⋊S3 in GAP, Magma, Sage, TeX
Q_8\times C_3\rtimes S_3
% in TeX
G:=Group("Q8xC3:S3");
// GroupNames label
G:=SmallGroup(144,174);
// by ID
G=gap.SmallGroup(144,174);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,116,50,964,3461]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=c^3=d^3=e^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export