Copied to
clipboard

G = C12.26D6order 144 = 24·32

26th non-split extension by C12 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C12.26D6, (C3×Q8)⋊5S3, Q83(C3⋊S3), C12⋊S37C2, (Q8×C32)⋊6C2, C33(Q83S3), C3212(C4○D4), C6.37(C22×S3), (C3×C6).36C23, (C3×C12).26C22, C3⋊Dic3.20C22, (C4×C3⋊S3)⋊5C2, C4.7(C2×C3⋊S3), C2.9(C22×C3⋊S3), (C2×C3⋊S3).19C22, SmallGroup(144,175)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C12.26D6
C1C3C32C3×C6C2×C3⋊S3C4×C3⋊S3 — C12.26D6
C32C3×C6 — C12.26D6
C1C2Q8

Generators and relations for C12.26D6
 G = < a,b,c | a12=1, b6=c2=a6, bab-1=a7, cac-1=a5, cbc-1=b5 >

Subgroups: 410 in 120 conjugacy classes, 47 normal (8 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C2×C4, D4, Q8, C32, Dic3, C12, D6, C4○D4, C3⋊S3, C3×C6, C4×S3, D12, C3×Q8, C3⋊Dic3, C3×C12, C2×C3⋊S3, Q83S3, C4×C3⋊S3, C12⋊S3, Q8×C32, C12.26D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, C2×C3⋊S3, Q83S3, C22×C3⋊S3, C12.26D6

Character table of C12.26D6

 class 12A2B2C2D3A3B3C3D4A4B4C4D4E6A6B6C6D12A12B12C12D12E12F12G12H12I12J12K12L
 size 111818182222222992222444444444444
ρ1111111111111111111111111111111    trivial
ρ211-11-11111-1-11111111-1-1-11111-1-1-1-1-1    linear of order 2
ρ3111-111111-1-11-1-11111-1-1-11111-1-1-1-1-1    linear of order 2
ρ411-1-1-11111111-1-11111111111111111    linear of order 2
ρ51111-11111-11-1-1-1111111-1-1-1-1-1-1-1-111    linear of order 2
ρ611-11111111-1-1-1-11111-1-11-1-1-1-1111-1-1    linear of order 2
ρ7111-1-111111-1-1111111-1-11-1-1-1-1111-1-1    linear of order 2
ρ811-1-111111-11-111111111-1-1-1-1-1-1-1-111    linear of order 2
ρ922000-1-12-1-22-200-1-1-122-1111-21-211-1-1    orthogonal lifted from D6
ρ1022000-12-1-122200-1-12-1-1-12-12-1-1-1-1-1-12    orthogonal lifted from S3
ρ1122000-1-1-122-2-2002-1-1-11-2-1111-2-12-111    orthogonal lifted from D6
ρ12220002-1-1-122200-12-1-1-1-1-12-1-1-1-1-122-1    orthogonal lifted from S3
ρ13220002-1-1-12-2-200-12-1-111-1-2111-1-12-21    orthogonal lifted from D6
ρ1422000-1-12-1-2-2200-1-1-12-211-1-12-1-21111    orthogonal lifted from D6
ρ1522000-12-1-1-22-200-1-12-1-1-1-21-211111-12    orthogonal lifted from D6
ρ1622000-1-1-12222002-1-1-1-12-1-1-1-12-12-1-1-1    orthogonal lifted from S3
ρ1722000-1-12-12-2-200-1-1-12-21-111-212-1-111    orthogonal lifted from D6
ρ1822000-1-1-12-22-2002-1-1-1-121111-21-21-1-1    orthogonal lifted from D6
ρ1922000-12-1-1-2-2200-1-12-111-2-12-1-11111-2    orthogonal lifted from D6
ρ20220002-1-1-1-2-2200-12-1-11112-1-1-111-2-21    orthogonal lifted from D6
ρ2122000-1-12-122200-1-1-122-1-1-1-12-12-1-1-1-1    orthogonal lifted from S3
ρ22220002-1-1-1-22-200-12-1-1-1-11-211111-22-1    orthogonal lifted from D6
ρ2322000-1-1-12-2-22002-1-1-11-21-1-1-121-2111    orthogonal lifted from D6
ρ2422000-12-1-12-2-200-1-12-11121-211-1-1-11-2    orthogonal lifted from D6
ρ252-20002222000-2i2i-2-2-2-2000000000000    complex lifted from C4○D4
ρ262-200022220002i-2i-2-2-2-2000000000000    complex lifted from C4○D4
ρ274-4000-24-2-20000022-42000000000000    orthogonal lifted from Q83S3, Schur index 2
ρ284-40004-2-2-2000002-422000000000000    orthogonal lifted from Q83S3, Schur index 2
ρ294-4000-2-24-200000222-4000000000000    orthogonal lifted from Q83S3, Schur index 2
ρ304-4000-2-2-2400000-4222000000000000    orthogonal lifted from Q83S3, Schur index 2

Smallest permutation representation of C12.26D6
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 30 52 44 13 62 7 36 58 38 19 68)(2 25 53 39 14 69 8 31 59 45 20 63)(3 32 54 46 15 64 9 26 60 40 21 70)(4 27 55 41 16 71 10 33 49 47 22 65)(5 34 56 48 17 66 11 28 50 42 23 72)(6 29 57 43 18 61 12 35 51 37 24 67)
(1 62 7 68)(2 67 8 61)(3 72 9 66)(4 65 10 71)(5 70 11 64)(6 63 12 69)(13 30 19 36)(14 35 20 29)(15 28 21 34)(16 33 22 27)(17 26 23 32)(18 31 24 25)(37 59 43 53)(38 52 44 58)(39 57 45 51)(40 50 46 56)(41 55 47 49)(42 60 48 54)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,30,52,44,13,62,7,36,58,38,19,68)(2,25,53,39,14,69,8,31,59,45,20,63)(3,32,54,46,15,64,9,26,60,40,21,70)(4,27,55,41,16,71,10,33,49,47,22,65)(5,34,56,48,17,66,11,28,50,42,23,72)(6,29,57,43,18,61,12,35,51,37,24,67), (1,62,7,68)(2,67,8,61)(3,72,9,66)(4,65,10,71)(5,70,11,64)(6,63,12,69)(13,30,19,36)(14,35,20,29)(15,28,21,34)(16,33,22,27)(17,26,23,32)(18,31,24,25)(37,59,43,53)(38,52,44,58)(39,57,45,51)(40,50,46,56)(41,55,47,49)(42,60,48,54)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,30,52,44,13,62,7,36,58,38,19,68)(2,25,53,39,14,69,8,31,59,45,20,63)(3,32,54,46,15,64,9,26,60,40,21,70)(4,27,55,41,16,71,10,33,49,47,22,65)(5,34,56,48,17,66,11,28,50,42,23,72)(6,29,57,43,18,61,12,35,51,37,24,67), (1,62,7,68)(2,67,8,61)(3,72,9,66)(4,65,10,71)(5,70,11,64)(6,63,12,69)(13,30,19,36)(14,35,20,29)(15,28,21,34)(16,33,22,27)(17,26,23,32)(18,31,24,25)(37,59,43,53)(38,52,44,58)(39,57,45,51)(40,50,46,56)(41,55,47,49)(42,60,48,54) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,30,52,44,13,62,7,36,58,38,19,68),(2,25,53,39,14,69,8,31,59,45,20,63),(3,32,54,46,15,64,9,26,60,40,21,70),(4,27,55,41,16,71,10,33,49,47,22,65),(5,34,56,48,17,66,11,28,50,42,23,72),(6,29,57,43,18,61,12,35,51,37,24,67)], [(1,62,7,68),(2,67,8,61),(3,72,9,66),(4,65,10,71),(5,70,11,64),(6,63,12,69),(13,30,19,36),(14,35,20,29),(15,28,21,34),(16,33,22,27),(17,26,23,32),(18,31,24,25),(37,59,43,53),(38,52,44,58),(39,57,45,51),(40,50,46,56),(41,55,47,49),(42,60,48,54)]])

C12.26D6 is a maximal subgroup of
C327C4≀C2  D12.10D6  Dic6.10D6  D12.14D6  C247D6  C24.40D6  C24.35D6  C24.28D6  C12⋊S3.C4  Dic6.26D6  S3×Q83S3  D1216D6  C3272- 1+4  C4○D4×C3⋊S3  C62.154C23  C6.(S3×A4)  (Q8×He3)⋊C2  C36.29D6  C3⋊Dic3.2A4  C12.39S32  C12.40S32  (Q8×C33)⋊C2
C12.26D6 is a maximal quotient of
C62.234C23  C62.236C23  C62.237C23  C62.238C23  C123D12  C62.242C23  Q8×C3⋊Dic3  C62.261C23  C62.262C23  C36.29D6  He35D4⋊C2  C12.39S32  C12.40S32  (Q8×C33)⋊C2

Matrix representation of C12.26D6 in GL6(𝔽13)

0120000
110000
0001200
001100
000001
0000120
,
110000
1200000
0001200
001100
000050
000008
,
110000
0120000
001100
0001200
000050
000005

G:=sub<GL(6,GF(13))| [0,1,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,12,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0],[1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,1,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[1,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,1,12,0,0,0,0,0,0,5,0,0,0,0,0,0,5] >;

C12.26D6 in GAP, Magma, Sage, TeX

C_{12}._{26}D_6
% in TeX

G:=Group("C12.26D6");
// GroupNames label

G:=SmallGroup(144,175);
// by ID

G=gap.SmallGroup(144,175);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,218,116,50,964,3461]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^6=c^2=a^6,b*a*b^-1=a^7,c*a*c^-1=a^5,c*b*c^-1=b^5>;
// generators/relations

Export

Character table of C12.26D6 in TeX

׿
×
𝔽