Extensions 1→N→G→Q→1 with N=C3 and Q=S3xD4

Direct product G=NxQ with N=C3 and Q=S3xD4
dρLabelID
C3xS3xD4244C3xS3xD4144,162

Semidirect products G=N:Q with N=C3 and Q=S3xD4
extensionφ:Q→Aut NdρLabelID
C3:1(S3xD4) = S3xD12φ: S3xD4/C4xS3C2 ⊆ Aut C3244+C3:1(S3xD4)144,144
C3:2(S3xD4) = D6:D6φ: S3xD4/D12C2 ⊆ Aut C3244C3:2(S3xD4)144,145
C3:3(S3xD4) = Dic3:D6φ: S3xD4/C3:D4C2 ⊆ Aut C3124+C3:3(S3xD4)144,154
C3:4(S3xD4) = D4xC3:S3φ: S3xD4/C3xD4C2 ⊆ Aut C336C3:4(S3xD4)144,172
C3:5(S3xD4) = S3xC3:D4φ: S3xD4/C22xS3C2 ⊆ Aut C3244C3:5(S3xD4)144,153

Non-split extensions G=N.Q with N=C3 and Q=S3xD4
extensionφ:Q→Aut NdρLabelID
C3.(S3xD4) = D4xD9φ: S3xD4/C3xD4C2 ⊆ Aut C3364+C3.(S3xD4)144,41

׿
x
:
Z
F
o
wr
Q
<