direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary
Aliases: S3×D4, C4⋊1D6, C12⋊C22, D12⋊3C2, C22⋊2D6, D6⋊2C22, C6.5C23, Dic3⋊1C22, C3⋊2(C2×D4), (C2×C6)⋊C22, (C4×S3)⋊1C2, (C3×D4)⋊2C2, C3⋊D4⋊1C2, (C22×S3)⋊2C2, C2.6(C22×S3), Aut(D12), Hol(C12), SmallGroup(48,38)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×D4
G = < a,b,c,d | a3=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 120 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C2×C4, D4, D4, C23, Dic3, C12, D6, D6, D6, C2×C6, C2×D4, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, S3×D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, S3×D4
Character table of S3×D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 6A | 6B | 6C | 12 | |
size | 1 | 1 | 2 | 2 | 3 | 3 | 6 | 6 | 2 | 2 | 6 | 2 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal faithful |
(1 9 8)(2 10 5)(3 11 6)(4 12 7)
(5 10)(6 11)(7 12)(8 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)
(2 4)(5 7)(10 12)
G:=sub<Sym(12)| (1,9,8)(2,10,5)(3,11,6)(4,12,7), (5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12), (2,4)(5,7)(10,12)>;
G:=Group( (1,9,8)(2,10,5)(3,11,6)(4,12,7), (5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12), (2,4)(5,7)(10,12) );
G=PermutationGroup([[(1,9,8),(2,10,5),(3,11,6),(4,12,7)], [(5,10),(6,11),(7,12),(8,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12)], [(2,4),(5,7),(10,12)]])
G:=TransitiveGroup(12,28);
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 10 23)(6 11 24)(7 12 21)(8 9 22)
(1 24)(2 21)(3 22)(4 23)(5 15)(6 16)(7 13)(8 14)(9 19)(10 20)(11 17)(12 18)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(5 7)(10 12)(13 15)(18 20)(21 23)
G:=sub<Sym(24)| (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,24)(2,21)(3,22)(4,23)(5,15)(6,16)(7,13)(8,14)(9,19)(10,20)(11,17)(12,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(21,23)>;
G:=Group( (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,24)(2,21)(3,22)(4,23)(5,15)(6,16)(7,13)(8,14)(9,19)(10,20)(11,17)(12,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(21,23) );
G=PermutationGroup([[(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,10,23),(6,11,24),(7,12,21),(8,9,22)], [(1,24),(2,21),(3,22),(4,23),(5,15),(6,16),(7,13),(8,14),(9,19),(10,20),(11,17),(12,18)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(5,7),(10,12),(13,15),(18,20),(21,23)]])
G:=TransitiveGroup(24,52);
(1 20 21)(2 17 22)(3 18 23)(4 19 24)(5 10 14)(6 11 15)(7 12 16)(8 9 13)
(1 3)(2 4)(5 7)(6 8)(9 15)(10 16)(11 13)(12 14)(17 24)(18 21)(19 22)(20 23)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 20)(10 19)(11 18)(12 17)(13 21)(14 24)(15 23)(16 22)
G:=sub<Sym(24)| (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22)>;
G:=Group( (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22) );
G=PermutationGroup([[(1,20,21),(2,17,22),(3,18,23),(4,19,24),(5,10,14),(6,11,15),(7,12,16),(8,9,13)], [(1,3),(2,4),(5,7),(6,8),(9,15),(10,16),(11,13),(12,14),(17,24),(18,21),(19,22),(20,23)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,20),(10,19),(11,18),(12,17),(13,21),(14,24),(15,23),(16,22)]])
G:=TransitiveGroup(24,53);
(1 20 21)(2 17 22)(3 18 23)(4 19 24)(5 10 14)(6 11 15)(7 12 16)(8 9 13)
(1 6)(2 7)(3 8)(4 5)(9 23)(10 24)(11 21)(12 22)(13 18)(14 19)(15 20)(16 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 20)(10 19)(11 18)(12 17)(13 21)(14 24)(15 23)(16 22)
G:=sub<Sym(24)| (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22)>;
G:=Group( (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22) );
G=PermutationGroup([[(1,20,21),(2,17,22),(3,18,23),(4,19,24),(5,10,14),(6,11,15),(7,12,16),(8,9,13)], [(1,6),(2,7),(3,8),(4,5),(9,23),(10,24),(11,21),(12,22),(13,18),(14,19),(15,20),(16,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,20),(10,19),(11,18),(12,17),(13,21),(14,24),(15,23),(16,22)]])
G:=TransitiveGroup(24,54);
S3×D4 is a maximal subgroup of
D8⋊S3 Q8⋊3D6 D4⋊6D6 D4○D12 D6⋊D6 Dic3⋊D6 D4.4S4 C20⋊D6 D10⋊D6 C28⋊D6 D6⋊D14 C4⋊S5 C4.3S5 C22⋊S5
S3×D4 is a maximal quotient of
Dic3.D4 Dic3⋊4D4 D6⋊D4 C23.9D6 Dic3⋊D4 C23.11D6 C12⋊Q8 Dic3⋊5D4 D6.D4 C12⋊D4 D6⋊Q8 D8⋊S3 D8⋊3S3 Q8⋊3D6 D4.D6 Q8.7D6 Q16⋊S3 D24⋊C2 C23⋊2D6 D6⋊3D4 C23.14D6 C12⋊3D4 D6⋊D6 Dic3⋊D6 C20⋊D6 D10⋊D6 C28⋊D6 D6⋊D14
action | f(x) | Disc(f) |
---|---|---|
12T28 | x12-4x6-5x3-1 | -318·56·113 |
Matrix representation of S3×D4 ►in GL4(ℤ) generated by
-1 | -1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | -1 | -1 |
0 | 0 | 1 | 0 |
-1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
G:=sub<GL(4,Integers())| [-1,1,0,0,-1,0,0,0,0,0,-1,1,0,0,-1,0],[-1,1,0,0,0,1,0,0,0,0,-1,1,0,0,0,1],[0,0,1,0,0,0,0,1,-1,0,0,0,0,-1,0,0],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1] >;
S3×D4 in GAP, Magma, Sage, TeX
S_3\times D_4
% in TeX
G:=Group("S3xD4");
// GroupNames label
G:=SmallGroup(48,38);
// by ID
G=gap.SmallGroup(48,38);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,97,804]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export