Extensions 1→N→G→Q→1 with N=C6×A4 and Q=C2

Direct product G=N×Q with N=C6×A4 and Q=C2
dρLabelID
A4×C2×C636A4xC2xC6144,193

Semidirect products G=N:Q with N=C6×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×A4)⋊1C2 = C6×S4φ: C2/C1C2 ⊆ Out C6×A4183(C6xA4):1C2144,188
(C6×A4)⋊2C2 = C2×C3⋊S4φ: C2/C1C2 ⊆ Out C6×A4186+(C6xA4):2C2144,189
(C6×A4)⋊3C2 = C2×S3×A4φ: C2/C1C2 ⊆ Out C6×A4186+(C6xA4):3C2144,190

Non-split extensions G=N.Q with N=C6×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×A4).1C2 = C3×A4⋊C4φ: C2/C1C2 ⊆ Out C6×A4363(C6xA4).1C2144,123
(C6×A4).2C2 = C6.7S4φ: C2/C1C2 ⊆ Out C6×A4366-(C6xA4).2C2144,126
(C6×A4).3C2 = Dic3×A4φ: C2/C1C2 ⊆ Out C6×A4366-(C6xA4).3C2144,129
(C6×A4).4C2 = C12×A4φ: trivial image363(C6xA4).4C2144,155

׿
×
𝔽