direct product, non-abelian, soluble, monomial
Aliases: C3×A4⋊C4, A4⋊C12, C6.10S4, (C2×A4).C6, (C3×A4)⋊1C4, C2.1(C3×S4), C23.(C3×S3), (C6×A4).1C2, (C2×C6)⋊1Dic3, C22⋊(C3×Dic3), (C22×C6).1S3, SmallGroup(144,123)
Series: Derived ►Chief ►Lower central ►Upper central
A4 — C3×A4⋊C4 |
Generators and relations for C3×A4⋊C4
G = < a,b,c,d,e | a3=b2=c2=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe-1=bc=cb, dcd-1=b, ce=ec, ede-1=d-1 >
Character table of C3×A4⋊C4
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 3 | 3 | 1 | 1 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | 1 | 1 | 3 | 3 | 3 | 3 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | i | -i | i | i | -i | -i | i | -i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | i | -i | -i | i | i | -i | i | linear of order 4 |
ρ9 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | -i | i | i | -i | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | -1 | ζ65 | ζ6 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ32 | ζ4ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | linear of order 12 |
ρ10 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | i | -i | -i | i | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | -1 | ζ6 | ζ65 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ3 | ζ43ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | linear of order 12 |
ρ11 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | i | -i | -i | i | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | -1 | ζ65 | ζ6 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ32 | ζ43ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | linear of order 12 |
ρ12 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | -i | i | i | -i | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | -1 | ζ6 | ζ65 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ3 | ζ4ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | linear of order 12 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ14 | 2 | -2 | -2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Dic3, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | -1-√-3 | -1+√-3 | ζ6 | -1 | ζ65 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 1+√-3 | 1-√-3 | -1+√-3 | -1-√-3 | 1 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×Dic3 |
ρ16 | 2 | 2 | 2 | 2 | -1+√-3 | -1-√-3 | ζ65 | -1 | ζ6 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ17 | 2 | -2 | -2 | 2 | -1+√-3 | -1-√-3 | ζ65 | -1 | ζ6 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 1-√-3 | 1+√-3 | -1-√-3 | -1+√-3 | 1 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×Dic3 |
ρ18 | 2 | 2 | 2 | 2 | -1-√-3 | -1+√-3 | ζ6 | -1 | ζ65 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ19 | 3 | 3 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | orthogonal lifted from S4 |
ρ20 | 3 | 3 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from S4 |
ρ21 | 3 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ6 | ζ6 | ζ65 | 0 | 0 | 0 | ζ6 | ζ65 | ζ3 | ζ65 | ζ32 | ζ6 | ζ32 | ζ3 | complex lifted from C3×S4 |
ρ22 | 3 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ65 | ζ65 | ζ6 | 0 | 0 | 0 | ζ65 | ζ6 | ζ32 | ζ6 | ζ3 | ζ65 | ζ3 | ζ32 | complex lifted from C3×S4 |
ρ23 | 3 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ6 | ζ6 | ζ65 | 0 | 0 | 0 | ζ32 | ζ3 | ζ65 | ζ3 | ζ6 | ζ32 | ζ6 | ζ65 | complex lifted from C3×S4 |
ρ24 | 3 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ65 | ζ65 | ζ6 | 0 | 0 | 0 | ζ3 | ζ32 | ζ6 | ζ32 | ζ65 | ζ3 | ζ65 | ζ6 | complex lifted from C3×S4 |
ρ25 | 3 | -3 | 1 | -1 | 3 | 3 | 0 | 0 | 0 | -i | -i | i | i | -3 | -3 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | -i | i | i | -i | -i | i | i | -i | complex lifted from A4⋊C4 |
ρ26 | 3 | -3 | 1 | -1 | 3 | 3 | 0 | 0 | 0 | i | i | -i | -i | -3 | -3 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | i | -i | -i | i | i | -i | -i | i | complex lifted from A4⋊C4 |
ρ27 | 3 | -3 | 1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -i | -i | i | i | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ32 | ζ6 | ζ65 | 0 | 0 | 0 | ζ43ζ32 | ζ4ζ3 | ζ4ζ3 | ζ43ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ32 | ζ43ζ3 | complex faithful |
ρ28 | 3 | -3 | 1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -i | -i | i | i | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ3 | ζ65 | ζ6 | 0 | 0 | 0 | ζ43ζ3 | ζ4ζ32 | ζ4ζ32 | ζ43ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ3 | ζ43ζ32 | complex faithful |
ρ29 | 3 | -3 | 1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | i | i | -i | -i | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ32 | ζ6 | ζ65 | 0 | 0 | 0 | ζ4ζ32 | ζ43ζ3 | ζ43ζ3 | ζ4ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ32 | ζ4ζ3 | complex faithful |
ρ30 | 3 | -3 | 1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | i | i | -i | -i | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ3 | ζ65 | ζ6 | 0 | 0 | 0 | ζ4ζ3 | ζ43ζ32 | ζ43ζ32 | ζ4ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ3 | ζ4ζ32 | complex faithful |
(1 26 14)(2 27 15)(3 28 16)(4 25 13)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)
(1 4)(2 3)(5 11)(6 8)(7 9)(10 12)(13 14)(15 16)(17 23)(18 20)(19 21)(22 24)(25 26)(27 28)(29 35)(30 32)(31 33)(34 36)
(1 3)(2 4)(5 9)(6 10)(7 11)(8 12)(13 15)(14 16)(17 21)(18 22)(19 23)(20 24)(25 27)(26 28)(29 33)(30 34)(31 35)(32 36)
(1 5 10)(2 11 6)(3 7 12)(4 9 8)(13 21 20)(14 17 22)(15 23 18)(16 19 24)(25 33 32)(26 29 34)(27 35 30)(28 31 36)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
G:=sub<Sym(36)| (1,26,14)(2,27,15)(3,28,16)(4,25,13)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24), (1,4)(2,3)(5,11)(6,8)(7,9)(10,12)(13,14)(15,16)(17,23)(18,20)(19,21)(22,24)(25,26)(27,28)(29,35)(30,32)(31,33)(34,36), (1,3)(2,4)(5,9)(6,10)(7,11)(8,12)(13,15)(14,16)(17,21)(18,22)(19,23)(20,24)(25,27)(26,28)(29,33)(30,34)(31,35)(32,36), (1,5,10)(2,11,6)(3,7,12)(4,9,8)(13,21,20)(14,17,22)(15,23,18)(16,19,24)(25,33,32)(26,29,34)(27,35,30)(28,31,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)>;
G:=Group( (1,26,14)(2,27,15)(3,28,16)(4,25,13)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24), (1,4)(2,3)(5,11)(6,8)(7,9)(10,12)(13,14)(15,16)(17,23)(18,20)(19,21)(22,24)(25,26)(27,28)(29,35)(30,32)(31,33)(34,36), (1,3)(2,4)(5,9)(6,10)(7,11)(8,12)(13,15)(14,16)(17,21)(18,22)(19,23)(20,24)(25,27)(26,28)(29,33)(30,34)(31,35)(32,36), (1,5,10)(2,11,6)(3,7,12)(4,9,8)(13,21,20)(14,17,22)(15,23,18)(16,19,24)(25,33,32)(26,29,34)(27,35,30)(28,31,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36) );
G=PermutationGroup([[(1,26,14),(2,27,15),(3,28,16),(4,25,13),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24)], [(1,4),(2,3),(5,11),(6,8),(7,9),(10,12),(13,14),(15,16),(17,23),(18,20),(19,21),(22,24),(25,26),(27,28),(29,35),(30,32),(31,33),(34,36)], [(1,3),(2,4),(5,9),(6,10),(7,11),(8,12),(13,15),(14,16),(17,21),(18,22),(19,23),(20,24),(25,27),(26,28),(29,33),(30,34),(31,35),(32,36)], [(1,5,10),(2,11,6),(3,7,12),(4,9,8),(13,21,20),(14,17,22),(15,23,18),(16,19,24),(25,33,32),(26,29,34),(27,35,30),(28,31,36)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)]])
C3×A4⋊C4 is a maximal subgroup of
Dic3.S4 Dic3⋊2S4 A4⋊D12 C12×S4 C62⋊6Dic3
C3×A4⋊C4 is a maximal quotient of C62.Dic3 C62⋊5Dic3
Matrix representation of C3×A4⋊C4 ►in GL3(𝔽13) generated by
9 | 0 | 0 |
0 | 9 | 0 |
0 | 0 | 9 |
12 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 12 |
1 | 0 | 0 |
0 | 12 | 0 |
0 | 0 | 12 |
0 | 2 | 0 |
0 | 0 | 1 |
7 | 0 | 0 |
5 | 0 | 0 |
0 | 0 | 5 |
0 | 5 | 0 |
G:=sub<GL(3,GF(13))| [9,0,0,0,9,0,0,0,9],[12,0,0,0,1,0,0,0,12],[1,0,0,0,12,0,0,0,12],[0,0,7,2,0,0,0,1,0],[5,0,0,0,0,5,0,5,0] >;
C3×A4⋊C4 in GAP, Magma, Sage, TeX
C_3\times A_4\rtimes C_4
% in TeX
G:=Group("C3xA4:C4");
// GroupNames label
G:=SmallGroup(144,123);
// by ID
G=gap.SmallGroup(144,123);
# by ID
G:=PCGroup([6,-2,-3,-2,-3,-2,2,36,579,2164,202,1301,347]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export
Subgroup lattice of C3×A4⋊C4 in TeX
Character table of C3×A4⋊C4 in TeX