Copied to
clipboard

G = Dic3×A4order 144 = 24·32

Direct product of Dic3 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: Dic3×A4, C3⋊(C4×A4), (C2×C6)⋊C12, (C3×A4)⋊3C4, C6.3(C2×A4), C2.1(S3×A4), (C22×C6).C6, (C2×A4).2S3, (C6×A4).3C2, C23.2(C3×S3), (C22×Dic3)⋊C3, C222(C3×Dic3), SmallGroup(144,129)

Series: Derived Chief Lower central Upper central

C1C2×C6 — Dic3×A4
C1C3C2×C6C22×C6C6×A4 — Dic3×A4
C2×C6 — Dic3×A4
C1C2

Generators and relations for Dic3×A4
 G = < a,b,c,d,e | a6=c2=d2=e3=1, b2=a3, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

3C2
3C2
4C3
8C3
3C22
3C22
3C4
9C4
3C6
3C6
4C6
8C6
4C32
9C2×C4
9C2×C4
2A4
3C2×C6
3Dic3
3C2×C6
12C12
4C3×C6
3C22×C4
2C2×A4
3C2×Dic3
3C2×Dic3
4C3×Dic3
3C4×A4

Character table of Dic3×A4

 class 12A2B2C3A3B3C3D3E4A4B4C4D6A6B6C6D6E6F6G12A12B12C12D
 size 1133244883399244668812121212
ρ1111111111111111111111111    trivial
ρ2111111111-1-1-1-11111111-1-1-1-1    linear of order 2
ρ311111ζ3ζ32ζ3ζ32-1-1-1-11ζ32ζ311ζ3ζ32ζ6ζ6ζ65ζ65    linear of order 6
ρ411111ζ32ζ3ζ32ζ3-1-1-1-11ζ3ζ3211ζ32ζ3ζ65ζ65ζ6ζ6    linear of order 6
ρ511111ζ3ζ32ζ3ζ3211111ζ32ζ311ζ3ζ32ζ32ζ32ζ3ζ3    linear of order 3
ρ611111ζ32ζ3ζ32ζ311111ζ3ζ3211ζ32ζ3ζ3ζ3ζ32ζ32    linear of order 3
ρ71-11-111111-ii-ii-1-1-1-11-1-1i-ii-i    linear of order 4
ρ81-11-111111i-ii-i-1-1-1-11-1-1-ii-ii    linear of order 4
ρ91-11-11ζ3ζ32ζ3ζ32i-ii-i-1ζ6ζ65-11ζ65ζ6ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3    linear of order 12
ρ101-11-11ζ3ζ32ζ3ζ32-ii-ii-1ζ6ζ65-11ζ65ζ6ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3    linear of order 12
ρ111-11-11ζ32ζ3ζ32ζ3i-ii-i-1ζ65ζ6-11ζ6ζ65ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32    linear of order 12
ρ121-11-11ζ32ζ3ζ32ζ3-ii-ii-1ζ65ζ6-11ζ6ζ65ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32    linear of order 12
ρ132222-122-1-10000-122-1-1-1-10000    orthogonal lifted from S3
ρ142-22-2-122-1-100001-2-21-1110000    symplectic lifted from Dic3, Schur index 2
ρ152222-1-1--3-1+-3ζ6ζ650000-1-1+-3-1--3-1-1ζ6ζ650000    complex lifted from C3×S3
ρ162-22-2-1-1--3-1+-3ζ6ζ65000011--31+-31-1ζ32ζ30000    complex lifted from C3×Dic3
ρ172-22-2-1-1+-3-1--3ζ65ζ6000011+-31--31-1ζ3ζ320000    complex lifted from C3×Dic3
ρ182222-1-1+-3-1--3ζ65ζ60000-1-1--3-1+-3-1-1ζ65ζ60000    complex lifted from C3×S3
ρ1933-1-130000-3-311300-1-1000000    orthogonal lifted from C2×A4
ρ2033-1-13000033-1-1300-1-1000000    orthogonal lifted from A4
ρ213-3-11300003i-3i-ii-3001-1000000    complex lifted from C4×A4
ρ223-3-1130000-3i3ii-i-3001-1000000    complex lifted from C4×A4
ρ2366-2-2-300000000-30011000000    orthogonal lifted from S3×A4
ρ246-6-22-300000000300-11000000    symplectic faithful, Schur index 2

Smallest permutation representation of Dic3×A4
On 36 points
Generators in S36
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 22 4 19)(2 21 5 24)(3 20 6 23)(7 26 10 29)(8 25 11 28)(9 30 12 27)(13 32 16 35)(14 31 17 34)(15 36 18 33)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(31 34)(32 35)(33 36)
(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)
(1 17 11)(2 18 12)(3 13 7)(4 14 8)(5 15 9)(6 16 10)(19 31 25)(20 32 26)(21 33 27)(22 34 28)(23 35 29)(24 36 30)

G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(31,34)(32,35)(33,36), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,17,11)(2,18,12)(3,13,7)(4,14,8)(5,15,9)(6,16,10)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(31,34)(32,35)(33,36), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,17,11)(2,18,12)(3,13,7)(4,14,8)(5,15,9)(6,16,10)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,22,4,19),(2,21,5,24),(3,20,6,23),(7,26,10,29),(8,25,11,28),(9,30,12,27),(13,32,16,35),(14,31,17,34),(15,36,18,33)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(31,34),(32,35),(33,36)], [(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36)], [(1,17,11),(2,18,12),(3,13,7),(4,14,8),(5,15,9),(6,16,10),(19,31,25),(20,32,26),(21,33,27),(22,34,28),(23,35,29),(24,36,30)]])

Dic3×A4 is a maximal subgroup of   Dic3.S4  Dic32S4  Dic3⋊S4  C4×S3×A4  Dic9⋊A4  C624C12
Dic3×A4 is a maximal quotient of   SL2(𝔽3).Dic3  Dic9⋊A4  C624C12

Matrix representation of Dic3×A4 in GL5(𝔽13)

112000
10000
001200
000120
000012
,
58000
08000
00800
00080
00008
,
10000
01000
001200
00010
000012
,
10000
01000
00100
000120
000012
,
10000
01000
00010
00001
00100

G:=sub<GL(5,GF(13))| [1,1,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[5,0,0,0,0,8,8,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,8],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0] >;

Dic3×A4 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times A_4
% in TeX

G:=Group("Dic3xA4");
// GroupNames label

G:=SmallGroup(144,129);
// by ID

G=gap.SmallGroup(144,129);
# by ID

G:=PCGroup([6,-2,-3,-2,-2,2,-3,36,441,190,3461]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=c^2=d^2=e^3=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of Dic3×A4 in TeX
Character table of Dic3×A4 in TeX

׿
×
𝔽